

genomics-bcftbx: library and utilities for NGS and genomic bioinformatics

genomics-bcftbx is a Python library (bcftbx) and set of utility
programs and scripts developed to support NGS and genomics-related
bioinformatics within the
Bioinformatics Core Facility [https://www.bmh.manchester.ac.uk/research/facilities/bioinformatics/]
of the Faculty of Biology, Medicine and Health (FBMH) at the
University of Manchester [https://www.manchester.ac.uk/] (UoM).

Getting started

	Overview

	Requirements

	Installation

Background

	Illumina sequencing data
	Overview

	Primary sequencing data: structure and naming conventions

	BCL-to-Fastq conversion software

	Demultiplexing: sample sheet files

	Output directory structure and Fastq naming conventions

	Legacy outputs

	SOLiD sequencing data
	Structure of SOLiD run names

	Navigating SOLiD run data directories

Usage

	Handling sequencing run data
	Illumina sequencing runs

	SOLiD sequencing runs

	NGS utilities
	Reporting ChIP-seq outputs

	Reporting RNA-seq outputs

	Determining strandedness of sequencing data

	Manage contaminant sequences for FastQC

	Convert SAM file to SOAP format

	Fastq manipulation
	Extract subsets of reads from Fastq files

	Split multi-lane Fastq into individual lanes

	Verify that Fastq files are paired

	Fasta manipulation
	Extract chromosome sequences from FASTA file

	Reorder FASTA file into karyotypic order

	Microarray data
	Probeset annotation

	Average data for ‘best’ exons

	Cross-reference data for two species

	Non-bioinformatics utilities
	Checking files and directories using MD5 sums

	Logging details of sequencing runs

Utilities

	Command reference
	analyse_solid_run.py

	annotate_probesets.py

	best_exons.py

	bowtie_mapping_stats.py

	extract_reads.py

	fastq_strand.py

	log_seq_data.sh

	make_macs_xls.py

	make_macs2_xls.py

	manage_seqs.py

	md5checker.py

	prep_sample_sheet.py

	reorder_fasta.py

	sam2soap.py

	split_fasta.py

	split_fastq.py

	verify_paired.py

	xrorthologs.py

bcftbx Library

	bcftbx library reference
	bcftbx.IlluminaData

	bcftbx.SolidData

	bcftbx.Experiment

	bcftbx.FASTQFile

	bcftbx.JobRunner

	bcftbx.Pipeline

	bcftbx.Md5sum

	bcftbx.platforms

	bcftbx.TabFile

	bcftbx.simple_xls and bcftbx.Spreadsheet

	bcftbx.cmdparse

	bcftbx.qc

	bcftbx.htmlpagewriter

	bcftbx.utils

	bcftbx.ngsutils

	Version History and Changes

Overview

genomics-bcftbx provides a Python library and a set of utilities
used for NGS and genomics-related bioinformatics tasks.

The bcftbx library provides submodules for various tasks,
including:

	handling data from Illumina and SOLiD sequencing platforms;

	working with various file formats including Fastq, Fasta, MS

	Excel (.xls and .xlsx), HTML and tab-delimited (.tsv)
files;

	running commands on local and cluster systems;

	general filesystem operations, text manipulation and checksumming.

More details on the bcftbx library can be found in bcftbx library reference.

The library supports a collection of utilities for tasks including:

	handling Illumina and SOLiD sequencing data;

	reporting outputs from bioinformatics software;

	analysing and reporting microarray data;

	performing basic manipulations on Fastq and Fasta files;

	working with MD5 checksumming of files.

More details on the utilities can be found in usage.

Requirements

Supported Python versions

The package consists predominantly of code written in Python, and the
following versions are supported:

	Python 3.6

	Python 3.7

	Python 3.8

Software dependencies

Some of the utilities also use 3rd-party software packages, including:

	STAR https://github.com/alexdobin/STAR

Other utilities perform post-processing of output from the following
external software packages:

	MACS https://github.com/macs3-project/MACS

	bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Installation

The genomics-bcftbx package is available from its GitHub respository at

	https://github.com/fls-bioinformatics-core/genomics

Specific versions can be obtained as tar.gz archives from:

	https://github.com/fls-bioinformatics-core/genomics/releases

The software is written in Python (see Supported Python versions for
a list of supported versions).

It is recommended to install the package into a Python virtualenv, for
example:

virtualenv venv.bcftbx
. venv.bcftbx/bin/activate

To install a specific version, first download and unpack the source code,
e.g.:

wget https://github.com/fls-bioinformatics-core/genomics/archive/2.0.0.tar.gz
tar zxf 2.0.0.tar.gz

Then install the package using:

pip install ./genomics-2.0.0

See the requirements documentation for details
of other 3rd party software that is needed for specific utilities.

Illumina sequencing data

Overview

This section outlines the general structure of the data from Illumina
based sequencers (GA2x, HiSEQ, MiSEQ, NextSeq, MiniSeq, iSeq etc) and
the procedures for converting these data into FASTQ format.

A sequencing run performed on one of these sequencer instruments includes
image analysis and base calling, and produces data files in either .bcl
(binary base call) format, or (more commonly), a compressed version
.bcl.gz (the primary sequencing data).

Additional processing is required to convert these BCL data files to
Fastq format for subsequent analysis; this processing is referred to as
BCL-to-fastq conversion.

In the case of multiplexed runs (i.e. runs where multiple samples are
sequenced in a single lane or run, now typically the standard way that
samples are sequenced) it is also necessary to perform demultiplexing
of the data, which assigns data from individual samples into distinct
Fastq files; this requires an additional control file called a
sample sheet which specifies which index sequences belong to which
sample.

Primary sequencing data: structure and naming conventions

The directories produced by the runs use a standard naming format of
the form:

<date_stamp>_<instrument_name>_<run_id>_<flow_cell>

for example 120518_ILLUMINA-13AD3FA_00002_FC.

The components are interpreted as follows:

	<date_stamp>: a 6-digit or 8-digit date stamp in year-month-day
format (e.g. 120518 is 18th May 2012)

	<instrument_name>: name of the Illumina instrument (e.g.
ILLUMINA-13AD3FA)

	<run_id>: id number corresponding to the run (e.g. 00002)

	<flow_cell>: identifier for the flow cell used for the run
(e.g. FC)

A partial directory structure is shown below:

<YYMMDD>_<INSTRUMENT>_<XXXXX>_<FLOWCELL>/
 |
 +-- Data/
 | |
 | +------ Intensities/
 | |
 + +-- .pos files
 | |
 | +-- config.xml
 +-- RunInfo.xml |
 +-- L001(2,3...)/ (lanes)
 |
 +-- BaseCalls/
 |
 +-- config.xml
 |
 +-- SampleSheet.csv
 |
 +--L001(2,3...)/ (lanes)
 |
 +-- C1.1/ (lane and cycle)
 |
 +-- .bcl(.gz) files
 |
 +-- .stats files

Key points:

	The .bcl or .bcl.gz files are located under the
Data/Intensities/BaseCalls/ directory

	The config.xml file under the BaseCalls directory is implicitly
needed for demultiplexing and fastq conversion

	The SampleSheet file is only needed if the demultiplexing needs to
be performed.

BCL-to-Fastq conversion software

Over time Illumina have provided a number of different software packages
to perform the BCL-to-Fastq process:

	CASAVA: included a Perl script configureBclToFastq.pl used
to generate a Makefile which performed BCL-to-Fastq conversion
(.bcl only). CASAVA is no longer supported;

	bclToFastq: just the BCL-to-Fastq conversion components of
CASAVA, with support for both .bcl and .bcl.gz formats).
bclToFastq is no longer supported;

	bcl2fastq: (version 1.8.*) provided a single bcl2fastq program
to perform the BCL-to-Fastq conversion; used the same sample sheet
file format as CASAVA and bclToFastq; bcl2fastq is no longer
supported;

	bcl2fastq2: (version 2 and above) updated the bcl2fastq
program with new options including combining data for the same
samples sequenced across multiple lanes into a single Fastq, and
introduced a newer sample sheet format (SampleSheet v1), and modified
output directory structure and Fastq naming convention. bcl2fastq2
is still commonly used for BCL-to-Fastq conversion;

	bcl-convert: replacement for bcl2fastq2, with a new sample sheet
format (SampleSheet v2).

Demultiplexing: sample sheet files

Multiplexed sequencing allows multiple samples to be run per lane, with
the samples being identified by distinct index sequences (barcodes) that
are attached to the template during sample preparation.

In order to demultiplex the data associated with each sample after
sequencing, the index sequences associated with the sample name has to
be supplied to the BCL-to-Fastq conversion software via a sample sheet
file.

There have been three different sample sheet formats:

	CASAVA format: comma-separated (CSV) file with one sample
description per line. This format is no longer supported;

	SampleSheet v1: (also referred to as “Illumina Experimental
Manager” or IEM format) introduced with bcl2fastq2 and also
supported by bcl-convert. Divided into different sections
containing specific data in CSV format;

	SampleSheet v2: introduced with bcl-convert and not supported
by earlier BCL-to-Fastq conversion software. Similar structure
to SampleSheet v1 but with different sections and parameters.

Note

The prep_sample_sheet.py utility can convert between
CASAVA and SampleSheet v1/IEM formats; it doesn’t currently
support SampleSheet v2 format.

Output directory structure and Fastq naming conventions

Since bcl2fastq2, BCL-to-Fastq conversion has resulted in output
directory structures of the form:

<OUT_DIR>/
 |
 +-- Project_A/
 | |
 | +-- *.fastq.gz file(s)
 |
 +-- Project_B/
 | |
 | +-- *.fastq.gz files(s)
 :
 |
 +-- Reports/
 |
 +-- Stats/
 |
 +-- Undetermined*.fastq.gz file(s)

Note

It is also possible to have additional “sample” subdirectories
within each project, grouping together Fastq files belonging
to the same sample, if the sample name and sample ID fields in
the sample sheet differ.

Within each project, Fastq files are gzipped and use the following
naming scheme:

<sample_name>_S<sample_index>_L<lane>_<read_id>_001.fastq.gz

e.g. NA10931_S12_L002_R1_001.fastq.gz

The sample name is the name supplied in the input sample sheet;
the sample index is an integer which indicates the order of the
sample within the sample sheet (so it is to some extent arbitrary).

Read IDs are R1, R2 etc for data reads, and I1, I2
etc for index reads.

The lane may be omitted if data for the sample has been combined
across all lanes into a single Fastq. For example:

NA10931_S12_R1_001.fastq.gz

The quality scores in the output fastq files are Phred+33 (see
http://en.wikipedia.org/wiki/FASTQ_format#Quality under the “Encoding”
section).

When demultiplexing it is likely that the software will be unable to
assign some of the reads to a specific sample. In this case these
reads will be classed as “undetermined” and will be assigned to
files directly under the top-level output directory with the name

Undetermined_S0_Llane>_<read_id>_001.fastq.gz

Note

The undetermined Fastqs always have sample index zero.

Legacy outputs

For pre-bcl2fastq BCL-to-Fastq conversion the output directory
structure would look like:

Unaligned/
 |
 +-- Project_A/
 | |
 | +- Sample_1/
 | | |
 | | +-- *.fastq.gz file(s)
 | |
 | +- Sample_2/
 | |
 | +-- *.fastq.gz file(s)
 |
 +-- Project_B/
 | |
 | +- Sample_3/
 | |
 | +-- *.fastq.gz file(s)
 :
 +-- Undetermined_indexes

The general naming scheme for fastq output files is:

<sample_name>_<barcode_sequence>_L<lane>_R<read_number>_<set_number>.fastq.gz

e.g. NA10931_ATCACG_L002_R1_001.fastq.gz

For non-multiplex runs (or in the absence of a sample sheet), one
sample is assumed per lane and all samples belong to he same project
with the sample name being the lane (e.g. lane1 etc) and the index
barcode sequence set to NoIndex, for example:

lane1_NoIndex_L001_R1_001.fastq.gz

When demultiplexing, the “undetermined” reads are assigned to Fastqs
in the Undetermined_indexes “project”.

SOLiD sequencing data

This section outlines the general structure of the data from SOLiD
based sequencers.

Structure of SOLiD run names

For multiplex fragment sequencing the run names will have the form:

<instrument-name>_<date-stamp>_FRAG_BC[_2]

(For example: solid0123_20110315_FRAG_BC).

The components are:

	<instrument_name>: name of the SOLiD instrument e.g. solid0123

	<date-stamp>: a date stamp in year-month-day format e.g. 20110315
is 15th March 2011

	FRAG: indicates a fragment library was used

	BC: indicates bar-coding was used (note that not all samples in the
run might be bar-coded, even if this appears in the name)

	2: if this is present then it indicates the data came from flow cell
2; otherwise it’s from flow cell 1.

For multiplex paired-end sequencing the run names have the form:

<instrument-name>_<date-stamp>_PE_BC

Here the PE part of the name indicates a paired-end run.

Note

If the run name contains WFA then it’s a work-flow analysis and not
final sequence data.

See also SOLiD 4 System Instrument Operation Quick Reference [http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_082582.pdf] (PDF)
for more information.

Navigating SOLiD run data directories

Run definition file

Typically the top-level of a SOLiD run data directory should contain the run
definition file which has information about the samples and libraries used in
the run, including the names that were assigned when the run was set up. For
example for a bar-coded sample this might look like:

version userId runType isMultiplexing runName runDesc mask protocol
v1.3 lab_user FRAGMENT TRUE solid0127_20111013_FRAG_BC 1_spot_mask_sf SOLiD4 Multiplex
primerSet baseLength
BC 10
F3 50
sampleName sampleDesc spotAssignments primarySetting library application secondaryAnalysis multiplexingSeries barcodes
DB_SB_JL_pool 1 default primary DB01 SingleTag sacCer2 BC Kit Module 1-96 "1"
DB_SB_JL_pool 1 default primary DB02 SingleTag sacCer2 BC Kit Module 1-96 "2"
...
DB_SB_JL_pool 1 default primary SB_DIMB_2 SingleTag none BC Kit Module 1-96 "14"
DB_SB_JL_pool 1 default primary SB_DMTA SingleTag none BC Kit Module 1-96 "15"

Essentially the run definition file consists of a three sections, each
delimited by a header line. The last section (with the header line
beginning sampleName...) has the information on each of the libraries,
and can be used to locate the primary data files.

Primary data files (csfasta/qual) for multiplex fragment sequencing

Locating the primary data files within the SOLiD data directories can be
quite tedious and confusing. For bar-coded samples the following heuristic
can be used:

	From the top-level of the SOLiD run directory (e.g.
solid0123_20111013_FRAG_BC) move into the subdirectory with the sample
name of interest (e.g. DB_SB_JL_pool, from the run definition file in
the previous section).

	Within the sample subdirectory, look for a directory called results
(which will be a link to one of the other results... directories here).
Move into the results directory.

	Within the results subdirectory, look for a directory called
libraries and move into this.

	Within libraries you should see subdirectories named for each of the
libraries associated with this sample, as they appear in the run definition
file (e.g. DB01, DB02, …, SB_DIMB_2, SB_DMTA). Move into
the subdirectory for the library of interest.

	Within the directory for a specific library, there should be one or more
subdirectories with names of the form primary.20111015000420127 (and
possibly also secondary.20111015000420127). Check each of these
subdirectories looking for the one which itself contains three subdirectories
reads, rejects and reports (the others will only contain
reads and reports). Move into this directory, and then into the
reads subdirectory. This is the location of the primary data files
(csfasta and qual files).

Typically this results in a path of the form:

solid0123_20111013_FRAG_BC/SAMPLE_NAME/results/libraries/LIBRARY_NAME/primary.TIMESTAMP/reads/

As a further check, the primary data file names should include F3 in the name.

Primary data files (csfasta/qual) for multiplex paired-end sequencing

In the case of paired-end sequencing the final data consists of primary data
file pairs for both the F3 and F5 reads for each library.

Locating the F3 and F5 reads uses a similar heuristic to that
described above for multiplex fragment sequencing:

	From the top-level of the SOLiD run directory, move into the subdirectory
for the sample name of interest (e.g. DB_SB_JL_pool).

	Look for the results directory and move into it.

	Look for the libraries directory and move into it.

	Within libraries there are subdirectories for each of the libraries
associated with this sample (e.g. DB01, DB02, …, SB_DIMB_2,
SB_DMTA) - move into the one for the library of interest.

	Here there are one or more subdirectories with names of the form
primary.20111015000420127 etc. Check each of these subdirectories
looking for those which contain three subdirectories reads, rejects
and reports (not just reads and reports). There should be two
primary... directories which match this criterion: in the reads
directory of one there will be primary data files with F5-BC in the
name, and in the other files with F3.

Automatic location of primary data using analyse_solid_run.py

The heuristics described above are also encoded in the
analyse_solid_run.py
program, which will identify and report the location of the primary data
files when without any other arguments i.e.:

analyse_solid_run.py solid0123_20111101_FRAG_BC

This works for both multiplex fragment and multiplex paired-end sequencing.

Handling sequencing run data

Illumina sequencing runs

The prep_sample_sheet.py utility can be used for editing
and clean-up of sample sheet files that are used as input to the Fastq
generation process, including converting between different sample sheet
formats.

Examples:

	Read in the sample sheet file SampleSheet.csv, update the
SampleProject and SampleID for lanes 1 and 8, and write
the updated sample sheet to the file SampleSheet2.csv:

prep_sample_sheet.py -o SampleSheet2.csv --set-project=1,8:Control \
 --set-id=1:PhiX_10pM --set-id=8:PhiX_12pM SampleSheet.csv

	Automatically fix spaces and duplicated sampleID/sampleProject
combinations and write out to SampleSheet3.csv:

prep_sample_sheet.py --fix-spaces --fix-duplicates \
 -o SampleSheet3.csv SampleSheet.csv

The bcftbx library also provides classes and functions for handling
Illumina sequencing data:

	bcftbx.IlluminaData

See Illumina sequencing data for details of the data structures
of raw and processed Illumina sequencing runs.

SOLiD sequencing runs

The analyse_solid_run.py utility can be used to report on
the primary data from a run of a SOLiD sequencer instrument, and perform
various checks and operations those data.

The bcftbx library also provides classes and functions for handling
SOLiD sequencing data:

	bcftbx.SolidData

	bcftbx.Experiment

See SOLiD sequencing data for details of the directory structure
and contents of a SOLiD sequencing run.

NGS utilities

Reporting ChIP-seq outputs

The make_macs2_xls.py utility can be used to convert an
output tab-delimited .XLS file from macs2 into an MS Excel
spreadsheet (either .xlsx or .xls format).

Additionally a .bed format file can be output, provided that macs2
was not run with the --broad option.

To process output from older versions of macs (i.e. 1.4.2 and earlier)
the legacy make_macs_xls.py utility can be used; however for
this version only MS XLS format is supported, and there is no option to
output a .bed file.

Reporting RNA-seq outputs

The bowtie_mapping_stats.py utility can be used to summarise
the mapping statistics produced by bowtie2 or bowtie, and output to
an MS Excel spreadsheet file.

The utility reads the bowtie2 log file and expects this to consist of
multiple blocks of text of the form:

...
<SAMPLE_NAME>
Time loading reference: 00:00:01
Time loading forward index: 00:00:00
Time loading mirror index: 00:00:02
Seeded quality full-index search: 00:10:20
reads processed: 39808407
reads with at least one reported alignment: 2737588 (6.88%)
reads that failed to align: 33721722 (84.71%)
reads with alignments suppressed due to -m: 3349097 (8.41%)
Reported 2737588 alignments to 1 output stream(s)
Time searching: 00:10:27
Overall time: 00:10:27
...

The sample name will be extracted along with the numbers of reads processed,
with at least one reported alignment, that failed to align, and with
alignments suppressed and tabulated in the output spreadsheet.

Determining strandedness of sequencing data

The fastq_strand.py utility can be used to determine the
strandedness (forward, reverse, or unstranded) of sequencing data in Fastq
format, using either a single Fastq file, or an an R1/R2 pair of Fastqs.

Note

The utility is a wrapper for the STAR mapper and requires that
STAR has been installed separately and is available on the
PATH.

The simplest example checks the strandedness for a single genome:

fastq_strand.py R1.fastq.gz R2.fastq.gz -g STARindex/mm10

In this example, STARindex/mm10 is a directory which contains the
STAR indexes for the mm10 genome build.

The output is a file called R1_fastq_strand.txt which summarises the
forward and reverse strandedness percentages:

#fastq_strand version: 0.0.1 #Aligner: STAR #Reads in subset: 1000
#Genome 1st forward 2nd reverse
STARindex/mm10 13.13 93.21

To include the count sums for unstranded, 1st read strand aligned and
2nd read strand aligned in the output file, specify the --counts
option:

#fastq_strand version: 0.0.1 #Aligner: STAR #Reads in subset: 1000
#Genome 1st forward 2nd reverse Unstranded 1st read strand aligned 2nd read strand aligned
STARindex/mm10 13.13 93.21 391087 51339 364535

Strandedness can be checked for multiple genomes by specifying
additional STAR indexes on the command line with multiple -g
flags:

fastq_strand.py R1.fastq.gz R2.fastq.gz -g STARindex/hg38 -g STARindex/mm10

Alternatively a panel of indexes can be supplied via a configuration
file of the form:

#Name STAR index
hg38 /mnt/data/STARindex/hg38
mm10 /mnt/data/STARindex/mm10

(NB blank lines and lines starting with a # are ignored). Use the
-c/--conf option to get the strandedness percentages using a
configuration file, For example:

fastq_strand.py -c model_organisms.conf R1.fastq.gz R2.fastq.gz

By default a random subset of 1000 read pairs is used from the input
Fastq pair; this can be changed using the --subset option. If the
subset is set to zero then all reads are used.

The number of threads used to run STAR can be set via the -n
option; to keep all the outputs from STAR specify the
--keep-star-output option.

The strandedness statistics can also be generated for a single Fastq
file, by only specifying one file on the command line. For example:

fastq_strand.py -c model_organisms.conf R1.fastq.gz

Manage contaminant sequences for FastQC

The manage_seqs.py utility can to help create and
update files with lists of so-called “contaminant” sequences, for
input into the FastQC program (specifically, via FastQC’s
--contaminants option).

For example, to create a new contaminants file using sequences from a
FASTA file:

manage_seqs.py -o custom_contaminants.txt sequences.fa

To append sequences to an existing contaminants file:

manage_seqs.py -a custom_contaminants.txt additional_seqs.fa

The inputs can be a mixture of FastQC “contaminants” format and/or
Fasta format files). The utility also check for redundancy (i.e.
sequences with multiple associated names) and contradictions (i.e.
names with multiple associated sequences).

Convert SAM file to SOAP format

The sam2soap.py utility converts a SAM file to SOAP
format.

Fastq manipulation

Extract subsets of reads from Fastq files

The extract_reads.py utility extracts subsets of
reads from each of the supplied Fastq files according to specified
criteria (either a random subset of a specified number reads, or
readings matching a specified pattern).

Multiple files are assumed to be pairs (e.g. R1/R2 Fastqs) or
groups (R1/I1/R2 Fastqs), with the same number of read records.
The same subset will be extracted from each file, so that
pairing/grouping is preserved.

Note

Input files can be any mixture of Fastq (.fastq, .fq),
or CSFASTA (.csfasta) and QUAL (.qual) files.

Split multi-lane Fastq into individual lanes

Given a multi-lane Fastq file (that is, a Fastq file containing
reads for several different sequencer lanes), the
split_fastq.py utility splits that data into
multiple output Fastqs where each file only contains reads from
a single lane.

Verify that Fastq files are paired

The verify_paired.py utility verifies that two
Fastqs form an R1/R2 pair, by checking that read headers for
corresponding records from the input Fastq files are in agreement.

Fasta manipulation

Extract chromosome sequences from FASTA file

The split_fasta.py utility extracts the sequences
associated with individual chromosomes from one or more FASTA
files.

Specifically, for each chromosome CHROM found in the input
FASTA file, outputs a file called CHROM.fa containing just
the sequence for that chromosome.

Sequences are identified as belonging to a specific chromosome
by a line >CHROM.

Reorder FASTA file into karyotypic order

The reorder_fasta.py utility will reorder the
chromosome records in a FASTA file into ‘karyotypic’ order,
for example:

chr1
chr2
...
chr10
chr11

in contrast to standard alphanumeric sorting (e.g. chr1,
chr10, chr11, chr2 etc).

Microarray data

Probeset annotation

The annotate_probesets.py utility can be used to annotate
a probeset list based on probe set names.

It requires a tab-delimited file as input, where the first column
comprises the probeset names (any other other columns are ignored), and
outputs each name to a new tab-delimited file alongside a description of
each.

For example input, the following input:

...
1769726_at
1769727_s_at
...

generates:

...
1769726_at Rank 1: _at : anti-sense target (most probe sets on the array)
1769727_s_at Warning: _s_at : designates probe sets that share common probes among multiple transcripts from different genes
...

Average data for ‘best’ exons

The best_exons.py utility picks the ‘top’ three exons
for each gene symbol from a tab-delimited (TSV) input file containing
the exon data, and outputs a single line for that gene symbol with
values averaged over the top three.

‘Top’ or ‘best’ exons are determined by ranking on either the
log2FoldChange (the default) or pValue (this is set using the
--rank-by option):

	For log2FoldChange, the ‘best’ exon is the one with the biggest
absolute log2FoldChange; if this is positive or zero then takes
the top three largest fold change value. Otherwise takes the bottom
three.

	For pValue, the ‘best’ exon is the one with the smallest value.

Outputs a TSV file with one line per gene symbol plus the average of
each data value for the 3 best exons according to the specified criterion.
The averages are just the mean of all the values.

Input file format

Tab separated values (TSV) file, with first line optionally being a header
line.

By default the program assumes:

	Column 0: probeset name (change using --probeset-col)

	Column 1: gene symbol (change using --gene-symbol-col)

	Column 12: log2 fold change (change using --log2-fold-change-col)

	Column 13: p-value (change using --p-value-col)

Column numbering starts from zero.

Output file format

TSV file with one gene symbol per line plus averaged data for the three
‘best’ exons (according to the specified criterion), and an extra column
which has a * to indicate which gene symbols had 4 or fewer exons
associated with them in the input file.

Note that the averages are just the mean of all the values.

Cross-reference data for two species

The xrorthologs.py utility will cross-reference data from
two species, given a lookup file that maps probe set IDs from one species
onto those onto the other.

The lookup file is a tab-delimited file with one probe set for species #1
per line in the first column, and a comma-separated list of the equivalent
probe sets for species 2 in the fourth column (columns two and three
are ignored).

For example:

...
121_at 7849 18510 1418208_at,1446561_at
1255_g_at 2978 14913 1421061_a
1316_at 7067 21833 1426997_at,1443952_at,1454675_at
1320_at 11099 24000 1419054_a_at,1419055_a_at,1453298_at
1405_i_at 6352 20304 1418126_at
...

Data for the two species are supplied via tab-delimited files SPECIES1
and SPECIES2, where the first column in each is a probe set ID (this
is the only requirement).

The output consists of two files:

	SPECIES1_appended.txt: a copy of SPECIES1 with the
cross-referenced data from SPECIES2 appended to each line, and

	SPECIES2_appended.txt: a copy of SPECIES2 with the SPECIES1
data appended.

Where there are multiple matching orthologs to a probe set ID, the data
for each match is appended onto a single line on the output.

Non-bioinformatics utilities

Checking files and directories using MD5 sums

The md5checker.py utility provides a way of checking files and directories
using MD5 sums; it can generate a set of MD5 sums for a file or the contents of
a directory, and then use these to verify the contents of another file, directory
or set of files.

Its basic functionality is very much like the standard md5sum Linux program
(however note that md5checker.py should also work on Windows), but it can
also compare two directories directly with MD5 sums, without the need for an
intermediate checksum file. This function is intended to provide a straightforward
way of running MD5 checks for example when copying analysis of data generated in
a cluster scratch area to the archive area.

For example: say you have a directory in $SCRATCH called my_work, which
holds the results of various analysis jobs that you’ve run on the cluster. At some
point you decide to copy these results to the data area:

cp -a $SCRATCH/my_work /mnt/data/copy_of_my_work

Then you run an MD5 sum check on the copy by doing:

md5checker.py --diff $SCRATCH/my_work /mnt/data/copy_of_my_work

which by default will generate output of the form:

Recursively checking files in /scratch/my_work against copies in /mnt/data/copy_of_my_work
important_data.sam: OK
important_data.bam: OK
...
Summary: 147 files checked, 147 okay 0 failed

(Note that this differencing mode only considers files that are in my_work, so
if copy_of_my_work contains additional files then these won’t be checked or
reported.)

Run md5checker.py -h to see the other available options.

Logging details of sequencing runs

The log_seq_data.sh script can be used to add and manage
entries for sequencing runs, analyses etc to a tab-delimited “logging
file”.

For example, logging the primary data directory for a SOLiD sequencing run
to the file SEQ_DATA.log with the associated description
Primary data:

log_seq_data.sh SEQ_DATA.log /mnt/data/solid0127_20110914_FRAG_BC "Primary data"

Logging an analysis directory associated with an Illumina sequencing run,
with no description:

log_seq_data.sh SEQ_DATA.log /mnt/data/220314_NB189782_0020_AHBXXXYX_analysis

Updating an existing entry to add a description:

log_seq_data.sh SEQ_DATA.log -u \
 /mnt/data/220314_NB189782_0020_AHBXXXYX_analysis \
 "Analysis of paired end NextSeq run"

Deleting an existing entry:

log_seq_data.sh SEQ_DATA.log -d /mnt/data/220314_NB189782_0020_AHBXXXYX_analysis

Command reference

Note

This documentation has been auto-generated from the
command help

The following utilities are available:

	analyse_solid_run.py

	annotate_probesets.py

	best_exons.py

	bowtie_mapping_stats.py

	extract_reads.py

	fastq_strand.py

	log_seq_data.sh

	make_macs_xls.py

	make_macs2_xls.py

	manage_seqs.py

	md5checker.py

	prep_sample_sheet.py

	reorder_fasta.py

	sam2soap.py

	split_fasta.py

	split_fastq.py

	verify_paired.py

	xrorthologs.py

analyse_solid_run.py

usage: analyse_solid_run.py [-h] [--version] [--only] [--report]
 [--report-paths] [--xls] [--verify] [--layout]
 [--rsync] [--copy COPY_PATTERN]
 [--gzip GZIP_PATTERN] [--md5 MD5_PATTERN]
 [--md5sum] [--no-warnings] [--debug]
 solid_run_dir [solid_run_dir ...]

Utility for performing various checks and operations on SOLiD run directories.
If a single solid_run_dir is specified then analyse_solid_run.py automatically
finds and operates on all associated directories from the same instrument and
with the same timestamp.

positional arguments:
 solid_run_dir SOLiD run directory to operate on

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 --only only operate on the specified solid_run_dir, don't
 locate associated run directories
 --report print a report of the SOLiD run
 --report-paths in report mode, also print full paths to primary data
 files
 --xls write report to Excel spreadsheet
 --verify do verification checks on SOLiD run directories
 --layout generate script for laying out analysis directories
 --rsync generate script for rsyncing data
 --copy COPY_PATTERN copy primary data files to pwd from specific library
 where names match COPY_PATTERN, which should be of the
 form '<sample>/<library>'
 --gzip GZIP_PATTERN make gzipped copies of primary data files in pwd from
 specific libraries where names match GZIP_PATTERN,
 which should be of the form '<sample>/<library>'
 --md5 MD5_PATTERN calculate md5sums for primary data files from specific
 libraries where names match MD5_PATTERN, which should
 be of the form '<sample>/<library>'
 --md5sum calculate md5sums for all primary data files
 (equivalent to --md5=*/*)
 --no-warnings suppress warning messages
 --debug turn on debugging output (nb overrides --no-warnings)

annotate_probesets.py

usage: annotate_probesets.py [-h] [--version] [-o OUT_FILE] IN_FILE

Annotate probeset list based on name: reads in first column of tab-delimited
input file 'probe_set_file' as a list of probeset names and outputs these
names to another tab-delimited file with a description for each. Output file
name can be specified with the -o option, otherwise it will be the input file
name with '_annotated' appended.

positional arguments:
 IN_FILE input probeset file

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -o OUT_FILE specify output file name

best_exons.py

usage: best_exons.py [-h] [--version] [--rank-by {log2_fold_change,p_value}]
 [--probeset-col PROBESET_COL]
 [--gene-symbol-col GENE_SYMBOL_COL]
 [--log2-fold-change-col LOG2_FOLD_CHANGE_COL]
 [--p-value-col P_VALUE_COL] [--debug]
 EXONS_IN BEST_EXONS

Read exon and gene symbol data from EXONS_IN and picks the top three exons for
each gene symbol, then outputs averages of the associated values to
BEST_EXONS.

positional arguments:
 EXONS_IN input file with exon and gene symbol data
 BEST_EXONS output file averages from top three exons for eachgene
 symbol

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 --rank-by {log2_fold_change,p_value}
 select the criterion for ranking the 'best' exons;
 possible options are: 'log2_fold_change' (default), or
 'p_value'.
 --probeset-col PROBESET_COL
 specify column with probeset names (default=0, columns
 start counting from zero)
 --gene-symbol-col GENE_SYMBOL_COL
 specify column with gene symbols (default=1, columns
 start counting from zero)
 --log2-fold-change-col LOG2_FOLD_CHANGE_COL
 specify column with log2 fold change (default=12,
 columns start counting from zero)
 --p-value-col P_VALUE_COL
 specify column with p-value (default=13; columns start
 counting from zero)
 --debug Turn on debug output

bowtie_mapping_stats.py

usage: bowtie_mapping_stats.py [-h] [--version] [-o xls_file] [-t]
 BOWTIE_LOG_FILE [BOWTIE_LOG_FILE ...]

Extract mapping statistics for each sample referenced in the input bowtie log
files and summarise the data in an XLS spreadsheet. Handles output from both
Bowtie and Bowtie2.

positional arguments:
 BOWTIE_LOG_FILE logfile output from Bowtie or Bowtie2

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -o xls_file specify name of the output XLS file (otherwise defaults to
 'mapping_summary.xls').
 -t write data to tab-delimited file in addition to the XLS
 file. The tab file will have the same name as the XLS file,
 with the extension replaced by .txt

extract_reads.py

usage: extract_reads.py [-h] [--version] [-m PATTERN] [-n N] [-s SEED]
 infile [infile ...]

Extract subsets of reads from each of the supplied files according to
specified criteria (e.g. random, matching a pattern etc). Input files can be
any mixture of FASTQ (.fastq, .fq), CSFASTA (.csfasta) and QUAL (.qual).

positional arguments:
 infile input FASTQ, CSFASTA, or QUAL file

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -m PATTERN, --match PATTERN
 extract records that match Python regular expression
 PATTERN
 -n N extract N random reads from the input file(s). If
 multiple files are supplied (e.g. R1/R2 pair) then the
 same subsets will be extracted for each. (Optionally a
 percentage can be supplied instead e.g. '50%' to
 extract a subset of half the reads.)
 -s SEED, --seed SEED specify seed for random number generator (used for -n
 option; using the same seed should produce the same
 'random' sample of reads)

fastq_strand.py

Fastq_strand: version 1.11.1
usage: fastq_strand.py [-h] [--version] [-g GENOMEDIR] [--subset SUBSET]
 [-o OUTDIR] [-c FILE] [-n N] [--counts]
 [--keep-star-output]
 READ1 [READ2]

Generate strandedness statistics for FASTQ or FASTQpair, by running STAR using
one or more genome indexes

positional arguments:
 READ1 R1 Fastq file
 READ2 R2 Fastq file

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -g GENOMEDIR, --genome GENOMEDIR
 path to directory with STAR index for genome to use
 (use as an alternative to -c/--conf; can be specified
 multiple times to include additional genomes)
 --subset SUBSET use a random subset of read pairs from the input
 Fastqs; set to zero to use all reads (default: 10000)
 -o OUTDIR, --outdir OUTDIR
 specify directory to write final outputs to (default:
 current directory)
 -c FILE, --conf FILE specify delimited 'conf' file with list of NAME and
 STAR index directory pairs. NB if a conf file is
 supplied then any indices specifed on the command line
 will be ignored
 -n N number of threads to run STAR with (default: 1)
 --counts include the count sums for unstranded, 1st read strand
 aligned and 2nd read strand aligned in the output file
 (default: only include percentages)
 --keep-star-output keep the output from STAR (default: delete outputs on
 completion)

log_seq_data.sh

/home/docs/checkouts/readthedocs.org/user_builds/genomics-bcftbx/envs/devel/bin/log_seq_data.sh: line 40: bcftbx.functions.sh: No such file or directory
/home/docs/checkouts/readthedocs.org/user_builds/genomics-bcftbx/envs/devel/bin/log_seq_data.sh: line 41: bcftbx.lock.sh: No such file or directory
Usage:
 log_seq_data.sh <logging_file> [-d|-u] <seq_data_dir> [<description>]
 log_seq_data.sh <logging_file> -c <seq_data_dir> <new_dir> [<description>]
 log_seq_data.sh <logging_file> -i <seq_data_dir>
 log_seq_data.sh <logging_file> -v

Add, update or delete an entry for <seq_data_dir> in <logging_file>, or
verify entries.

<seq_data_dir> can be a primary data directory from a sequencer or a
directory of derived data (e.g. analysis directory)

By default an entry is added for the specified data directory; each
entry is a tab-delimited line with the full path for the data directory
followed by the UNIX timestamp and the optional description text.

If <logging_file> doesn't exist then it will be created; if
<seq_data_dir> is already in the log file then it won't be added again.

Options:

 -d deletes an existing entry
 -u update description for an existing entry (or creates a new one
 if an existing entry not found)
 -c changes an existing entry, updating the directory path and
 (optionally) the description
 -i print information about an entry
 -v validates the entries in the logging file.

make_macs_xls.py

usage: make_macs_xls.py [-h] [--version] MACS_OUTPUT [XLS_OUT]

Create an XLS spreadsheet from the output of the MACS peak caller.
<MACS_OUTPUT> is the output '.xls' file from MACS; if supplied then <XLS_OUT>
is the name to use for the output file, otherwise it will be called
'XLS_<MACS_OUTPUT>.xls'.

positional arguments:
 MACS_OUTPUT output .xls file from MACS
 XLS_OUT output MS XLS file (defaults to 'XLS_<MACS_OUTPUT>.xls').

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit

make_macs2_xls.py

usage: make_macs2_xls.py [-h] [--version] [-f XLS_FORMAT] [-b]
 MACS2_XLS [XLS_OUT]

Create an XLS(X) spreadsheet from the output of the MACS2 peak caller.
MACS2_XLS is the output '.xls' file from MACS2; if supplied then XLS_OUT is
the name to use for the output file (otherwise it will be called
'XLS_<MACS2_XLS>.xls(x)').

positional arguments:
 MACS2_XLS output '.xls' file from MACS2
 XLS_OUT name to use for the output file (default is
 'XLS_<MACS2_XLS>.xls(x)')

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -f XLS_FORMAT, --format XLS_FORMAT
 specify the output Excel spreadsheet format; must be
 one of 'xlsx' or 'xls' (default is 'xlsx')
 -b, --bed write an additional TSV file with chrom,
 abs_summit+100 and abs_summit-100 data as the columns.
 (NB only possible for MACS2 run without --broad)

manage_seqs.py

usage: manage_seqs.py [-h] [--version] [-o OUT_FILE] [-a APPEND_FILE]
 [-d DESCRIPTION]
 INFILE [INFILE ...]

Read sequences and names from one or more INFILEs (which can be a mixture of
FastQC 'contaminants' format and or Fasta format), check for redundancy (i.e.
sequences with multiple associated names) and contradictions (i.e. names with
multiple associated sequences).

positional arguments:
 INFILE input sequences

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -o OUT_FILE write all sequences to OUT_FILE in FastQC 'contaminants'
 format
 -a APPEND_FILE append sequences to existing APPEND_FILE (not compatible
 with -o)
 -d DESCRIPTION supply arbitrary text to write to the header of the output
 file

md5checker.py

usage:
 md5checker.py -d SOURCE_DIR DEST_DIR
 md5checker.py -d FILE1 FILE2
 md5checker.py [-o CHKSUM_FILE] DIR
 md5checker.py [-o CHKSUM_FILE] FILE
 md5checker.py -c CHKSUM_FILE

Compute and verify MD5 checksums for files and directories.

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -d, --diff for two directories: check that contents of directory
 DIR1 are present in DIR2 and have the same MD5 sums;
 for two files: check that FILE1 and FILE2 have the
 same MD5 sums
 -c, --check read MD5 sums from the specified file and check them
 -q, --quiet suppress output messages and only report failures

Directory comparison (-d, --diff):
 Check that the contents of SOURCE_DIR are present in TARGET_DIR and have
 matching MD5 sums. Note that files that are only present in TARGET_DIR are
 not reported.

File comparison (-d, --diff):
 Check that FILE1 and FILE2 have matching MD5 sums.

Checksum generation:
 MD5 checksums are calcuated for all files in the specified directory, or
 for a single specified file.

 -o CHKSUM_FILE, --output CHKSUM_FILE
 optionally write computed MD5 sums to CHKSUM_FILE
 (otherwise the sums are written to stdout). The output
 format is the same as that used by the Linux 'md5sum'
 tool.

Checksum verification (-c, --check):
 Check MD5 sums for each of the files listed in the specified CHKSUM_FILE
 relative to the current directory. This option behaves the same as the
 Linux 'md5sum' tool.

prep_sample_sheet.py

usage: prep_sample_sheet.py [-h] [--version] [-o SAMPLESHEET_OUT] [-f FMT]
 [-V] [--fix-spaces] [--fix-duplicates]
 [--fix-empty-projects] [--set-id SAMPLE_ID]
 [--set-project SAMPLE_PROJECT]
 [--reverse-complement-i5] [--ignore-warnings]
 [--include-lanes LANES] [--set-adapter ADAPTER]
 [--set-adapter-read2 ADAPTER_READ2]
 [--truncate-barcodes BARCODE_LEN] [--miseq]
 SAMPLE_SHEET

Utility to prepare SampleSheet files from Illumina sequencers. Can be used to
view, validate and update or fix information such as sample IDs and project
names before running BCL to FASTQ conversion.

positional arguments:
 SAMPLE_SHEET input sample sheet file

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -o SAMPLESHEET_OUT output new sample sheet to SAMPLESHEET_OUT
 -f FMT, --format FMT specify the format of the output sample sheet written
 by the -o option; can be either 'CASAVA' or 'IEM'
 (defaults to the format of the original file)
 -V, --view view predicted outputs from sample sheet
 --fix-spaces replace spaces in sample ID and project fields with
 underscores
 --fix-duplicates append unique indices to sample IDs where the original
 ID and project name combination are duplicated
 --fix-empty-projects create sample project names where these are blank in
 the original sample sheet
 --set-id SAMPLE_ID update/set the values in sample ID field; SAMPLE_ID
 should be of the form '<lanes>:<name>', where <lanes>
 is a single integer (e.g. 1), a set of integers (e.g.
 1,3,...), a range (e.g. 1-3), or a combination (e.g.
 1,3-5,7)
 --set-project SAMPLE_PROJECT
 update/set values in the sample project field;
 SAMPLE_PROJECT should be of the form
 '[<lanes>:]<name>', where the optional <lanes> part
 can be a single integer (e.g. 1), a set of integers
 (e.g. 1,3,...), a range (e.g. 1-3), or a combination
 (e.g. 1,3-5,7). If no lanes are specified then all
 samples will have their project set to <name>
 --reverse-complement-i5
 replace i5 index sequences with their reverse
 complement
 --ignore-warnings ignore warnings about spaces and duplicated
 sampleID/sampleProject combinations when writing new
 samplesheet.csv file
 --include-lanes LANES
 specify a subset of lanes to include in the output
 sample sheet; LANES should be single integer (e.g. 1),
 a list of integers (e.g. 1,3,...), a range (e.g. 1-3)
 or a combination (e.g. 1,3-5,7). Default is to include
 all lanes
 --set-adapter ADAPTER
 set the adapter sequence in the 'Settings' section to
 ADAPTER
 --set-adapter-read2 ADAPTER_READ2
 set the adapter sequence for read 2 in the
 'Settings'section to ADAPTER_READ2

Deprecated options:
 --truncate-barcodes BARCODE_LEN
 trim barcode sequences in sample sheet to number of
 bases specified by BARCODE_LEN. Default is to leave
 barcode sequences unmodified (deprecated; only works
 for CASAVA-style sample sheets)
 --miseq convert input MiSEQ sample sheet to CASAVA-compatible
 format (deprecated; specify -f/--format CASAVA to
 convert IEM sample sheet to older format)

reorder_fasta.py

usage: reorder_fasta.py [-h] [--version] FASTA

Reorder the chromosome records in a FASTA file into karyotypic order.

positional arguments:
 FASTA FASTA file to reorder

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit

sam2soap.py

usage: sam2soap.py [-h] [--version] [-o SOAPFILE] [--debug] [SAMFILE]

Convert SAM file to SOAP format - reads from stdin (or SAMFILE, if specified),
and writes output to stdout unless -o option is specified.

positional arguments:
 SAMFILE SAM file to convert (or stdin if not specified)

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -o SOAPFILE Output SOAP file name
 --debug Turn on debugging output

split_fasta.py

usage: split_fasta.py [-h] [--version] [fasta_file]

Split input FASTA file with multiple sequences into multiple files each
containing sequences for a single chromosome.

positional arguments:
 fasta_file input FASTA file to split

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit

split_fastq.py

usage: split_fastq.py [-h] [--version] [-l LANES] FASTQ

Split input Fastq file into multiple output Fastqs where each output only
contains reads from a single lane.

positional arguments:
 FASTQ Fastq to split

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -l LANES, --lanes LANES
 lanes to extract: can be a single integer, a comma-
 separated list (e.g. 1,3), a range (e.g. 5-7) or a
 combination (e.g. 1,3,5-7). Default is to extract all
 lanes in the Fastq

verify_paired.py

usage: verify_paired.py [-h] [--version] R1.fastq R2.fastq

Check that read headers for R1 and R2 fastq files are in agreement, and that
the files form an R1/2 pair.

positional arguments:
 R1.fastq Fastq file with R1 reads
 R2.fastq Fastq file with R2 reads to check against R1 reads

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit

xrorthologs.py

usage: xrorthologs.py [-h] [--version] [--debug] LOOKUPFILE SPECIES1 SPECIES2

Cross-reference data from two species given a lookup file that maps probeset
IDs from one species onto those onto the other. LOOKUPFILE is tab-delimited
file with one probe set for species 1 per line in first column and a comma-
separated list of the equivalent probe sets for species 2 in the fourth
column. Data for the two species are in tab-delimited files SPECIES1 and
SPECIES2. Output is two files: SPECIES1_appended.txt (SPECIES1 with the cross-
referenced data from SPECIES2 appended to each line) and SPECIES2_appended.txt
(SPECIES2 with SPECIES1 data appended).

positional arguments:
 LOOKUPFILE tab-delimited file with one probe set for species 1 per line in
 first column and a comma-separated list of the equivalent probe
 sets for species 2 in the fourth column
 SPECIES1 data for species 1
 SPECIES2 data for species 2

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 --debug Turn on debugging output

bcftbx library reference

	bcftbx.IlluminaData
	Core data and run handling classes

	Samplesheet handling

	Utility classes and functions

	Exception classes

	bcftbx.SolidData
	SolidRun

	SolidSample

	SolidLibrary

	SolidPrimaryData

	Functions

	bcftbx.Experiment

	bcftbx.FASTQFile

	bcftbx.JobRunner

	bcftbx.Pipeline
	Classes

	Functions

	bcftbx.Md5sum

	bcftbx.platforms

	bcftbx.TabFile
	Creating a TabFile

	Accessing Data within a TabFile

	Adding and Removing Data

	Filtering Data

	Sorting Data

	Manipulating Data: whole column operations

	Writing to File

	Specifying Delimiters

	TabFileIterator: iterating through a tab-delimited file

	bcftbx.simple_xls and bcftbx.Spreadsheet
	simple_xls

	Spreadsheet

	bcftbx.cmdparse

	bcftbx.qc
	bcftbx.qc.report

	bcftbx.htmlpagewriter

	bcftbx.utils
	General utility classes

	File handling utilities

	File system wrappers and utilities

	Symbolic link handling

	Sample name utilities

	File manipulations

	Text manipulations

	bcftbx.ngsutils
	Extracting reads from Fastq, cfasta and qual files

bcftbx.IlluminaData

Provides classes for extracting data about runs of Illumina-based sequencers
(e.g. GA2x or HiSeq) from directory structure, data files and naming
conventions.

Core data and run handling classes

	
class bcftbx.IlluminaData.IlluminaData(illumina_analysis_dir, unaligned_dir='Unaligned')

	Class for examining Illumina data post bcl-to-fastq conversion

Provides the following attributes:

	analysis_dir: top-level directory holding the ‘Unaligned’
subdirectory with the primary fastq.gz files

	projects: list of IlluminaProject objects (one for each
project defined at the fastq creation stage)

	undetermined: IlluminaProject object for the undetermined
reads

	unaligned_dir: full path to the ‘Unaligned’ directory
holding the primary fastq.gz files

	paired_end: True if at least one project is paired end,
False otherwise

	format: Format of the directory structure layout (either
‘casava’ or ‘bcl2fastq2’, or None if the format cannot
be determined)

	lanes: List of lane numbers present; if there are no lanes
then this will be a list with ‘None’ as the only value

Provides the following methods:

	get_project(): lookup and return an IlluminaProject object
corresponding to the supplied project name

	
class bcftbx.IlluminaData.IlluminaProject(dirn)

	Class for storing information on a ‘project’ within an Illumina run

A project is a subset of fastq files from a run of an Illumina
sequencer; in the first instance projects are defined within the
SampleSheet.csv file which is output by the sequencer.

Note that the “undetermined” fastqs (which hold reads for each lane
which couldn’t be assigned to a barcode during demultiplexing) is also
considered as a project, and can be processed using an IlluminaProject
object.

Provides the following attributes:

	name: name of the project

	dirn: (full) path of the directory for the project

	expt_type: the application type for the project e.g. RNA-seq,
ChIP-seq (initially set to None; should be explicitly set by
the calling subprogram)

	samples: list of IlluminaSample objects for each sample within
the project

	paired_end: True if all samples are paired end, False otherwise

	undetermined: True if ‘samples’ are actually undetermined reads

	
class bcftbx.IlluminaData.IlluminaRun(illumina_run_dir, platform=None)

	Class for examining ‘raw’ Illumina data directory.

Provides the following properties:

	run_dir: name and full path to the top-level data directory

	basecalls_dir: name and full path to the subdirectory holding bcl files

	sample_sheet_csv: full path of the SampleSheet.csv file

	runinfo_xml: full path of the RunInfo.xml file

	platform: platform e.g. ‘miseq’

	bcl_extension: file extension for bcl files (either “bcl” or “bcl.gz”)

	lanes: list of (integer) lane numbers in the run

	sample_sheet: SampleSheet instance (if the run has an associated
sample sheet file)

	runinfo: IlluminaRunInfo instance (if the run has an associated
RunInfo.xml file)

	
class bcftbx.IlluminaData.IlluminaRunInfo(runinfo_xml)

	Class for examining Illumina RunInfo.xml file

Extracts basic information from a RunInfo.xml file:

	run_id: the run id e.g.’130805_PJ600412T_0012_ABCDEZXDYY’

	run_number: the run number e.g. ‘0012’

	instrument: the instrument name e.g. ‘PJ600412T’

	date: the run date e.g. ‘130805’

	flowcell: the flowcell id e.g. ‘ABCDEZXDYY’

	lane_count: the flowcell lane count e.g. 8

	bases_mask: bases mask string derived from the read
information e.g. ‘y101,I6,y101’

	reads: a list of Python dictionaries (one per read)

Each dictionary in the ‘reads’ list has the following keys:

	number: the read number (1,2,3,…)

	num_cycles: the number of cycles in the read e.g. 101

	is_indexed_read: whether the read is an index (i.e.
barcode); either ‘Y’ or ‘N’

	
class bcftbx.IlluminaData.IlluminaSample(dirn, fastqs=None, name=None, prefix='Sample_')

	Class for storing information on a ‘sample’ within an Illumina project

A sample is a fastq file generated within an Illumina sequencer run.

Provides the following attributes:

	name: sample name

	dirn: (full) path of the directory for the sample

	fastq: name of the fastq.gz file (without leading directory,
join to ‘dirn’ to get full path)

	paired_end: boolean; indicates whether sample is paired end

Samplesheet handling

	
class bcftbx.IlluminaData.SampleSheet(sample_sheet=None, fp=None)

	Class for handling Illumina sample sheets

This is a general class which tries to handle and convert
between older (i.e. ‘CASAVA’-style) and newer (IEM-style) sample
sheet files for Illumina sequencers, in a transparent manner.

The Experimental Manager (IEM) samplel sheets are text files
with data delimited by ‘[…]’ lines e.g. ‘[Header]’, ‘[Reads]’
etc.

The ‘Header’ section consists of comma-separated key-value pairs
e.g. ‘Application,HiSeq FASTQ Only’.

The ‘Reads’ section consists of values (one per line) (possibly
number of bases per read?) e.g. ‘101’.

The ‘Settings’ section consists of comma-separated key-value
pairs e.g. ‘Adapter,CTGTCTCTTATACACATCT’.

The ‘Manifests’ section consists of comma-separated key-filename
pairs e.g. ‘A,TruSeqAmpliconManifest-1.txt’.

The ‘Data’ section contains the data about the lanes, samples
and barcode indexes. It consists of lines of comma-separated
values, with the first line being a ‘header’, and the remainder
being values for each of those fields.

This older style of sample sheet is used by CASAVA and bcl2fastq
v1.8.*. It consists of lines of comma-separated values, with the
first line being a ‘header’ and the remainder being values for
each of the fields:

	FCID: flow cell ID

	Lane: lane number (integer from 1 to 8)

	SampleID: ID (name) for the sample

	SampleRef: reference used for alignment for the sample

	Index: index sequences (multiple index reads are separated by a
hyphen e.g. ACCAGTAA-GGACATGA

	Description: Description of the sample

	Control: Y indicates this lane is a control lane, N means sample

	Recipe: Recipe used during sequencing

	Operator: Name or ID of the operator

	SampleProject: project the sample belongs to

Although the CASAVA-style sample sheet looks much like the IEM
‘Data’ section, note that it has different fields and field
names.

To load data from an IEM-format file:

>>> iem = SampleSheet('SampleSheet.csv')

To access ‘header’ items:

>>> iem.header_items
['IEMFileVersion','Date',..]
>>> iem.header['IEMFileVersion']
'4'

To access ‘reads’ data:

>>> iem.reads
['101','101']

To access ‘settings’ items:

>>> iem.settings_items
['ReverseComplement',...]
>>> iem.settings['ReverseComplement']
'0'

To access ‘manifests’ items:

>>> iem.manifests_items
['A',...]
>>> iem.manifests['A']
'TruSeqAmpliconManifest-1.txt'

To access ‘data’ (the actual sample sheet information):

>>> iem.data.header()
['Lane','Sample_ID',...]
>>> iem.data[0]['Lane']
1

etc.

To load data from a CASAVA style sample sheet:

>>> casava = SampleSheet('SampleSheet.csv')

To access the data use the ‘data’ property:

>>> casava.data.header()
['Lane','SampleID',...]
>>> casava.data[0]['Lane']
1

The data in the ‘Data’ section can be accessed directly
from the SampleSheet instance, e.g.

>>> iem[0]['Lane']

is equivalent to

>>> iem.data[0]['Lane']

It is also possible to set new values for data items using
this notation.

The data lines can be iterated over using:

>>> for line in iem:
>>> ...

To find the number of lines that are stored:

>>> len(iem)

To append a new line:

>>> new_line = iem.append(...)

A number of methods are available to check and fix common
problems, specifically:

	detect and replace ‘illegal’ characters in sample and project
names

	detect and fix duplicated sample name, project and lane
combinations

	detect blank sample and project names

Data is loaded it is also subjected to some basic cleaning
up, including stripping of unnecessary commas and white space.
The ‘show’ method returns a reconstructed version of the
original sample sheet after the cleaning operations were
performed.

	
class bcftbx.IlluminaData.CasavaSampleSheet(samplesheet=None, fp=None)

	Class for reading and manipulating sample sheet files for CASAVA

This class is a subclass of the SampleSheet class, and provides
an additional method (‘casava_sample_sheet’) to convert to a
CASAVA-style sample sheet, suitable for input into bcl2fastq
version 1.8.*.

Raises IlluminaDataError exception if the input data doesn’t
appear to be in the correct format.

	
class bcftbx.IlluminaData.IEMSampleSheet(sample_sheet=None, fp=None)

	Class for handling Experimental Manager format sample sheet

This class is a subclass of the SampleSheet class, and provides
an additional method (‘casava_sample_sheet’) to convert to a
CASAVA-style sample sheet, suitable for input into bcl2fastq
version 1.8.*.

	
bcftbx.IlluminaData.convert_miseq_samplesheet_to_casava(samplesheet=None, fp=None)

	Convert a Miseq sample sheet file to CASAVA format

Reads the data in a Miseq-format sample sheet file and returns a
CasavaSampleSheet object with the equivalent data.

Note: this is now just a wrapper for the more general conversion
function ‘get_casava_sample_sheet’ (which can handle the conversion
without knowing a priori what the SampleSheet format is.

	Parameters

	samplesheet – name of the Miseq sample sheet file

	Returns

	A populated CasavaSampleSheet object.

	
bcftbx.IlluminaData.get_casava_sample_sheet(samplesheet=None, fp=None, FCID_default='FC1')

	Load data into a ‘standard’ CASAVA sample sheet CSV file

Reads the data from an Illumina platform sample sheet CSV file and
populates and returns a CasavaSampleSheet object which can be
used to generate make a SampleSheet suitable for bcl-to-fastq
conversion.

The source sample sheet may be in the format output by the
Experimental Manager software (needed when running BaseSpace) or
may already be in “standard” format for bcl-to-fastq format.

For Experimental Manager format, the sample sheet consists of
sections delimited by headers of the form “[Header]”, “[Reads]” etc.
The information about the sample names and barcodes are in the
“[Data]” section, which is essentially a list of CSV format lines
with the following fields:

MiSEQ:

Sample_ID,Sample_Name,Sample_Plate,Sample_Well,I7_Index_ID,index,
Sample_Project,Description

HiSEQ:

Lane,Sample_ID,Sample_Name,Sample_Plate,Sample_Well,I7_Index_ID,
index,Sample_Project,Description

(Note that for dual-indexed runs the fields are e.g.:

Sample_ID,Sample_Name,Sample_Plate,Sample_Well,I7_Index_ID,index,
I5_Index_ID,index2,Sample_Project,Description

i.e. there are an additional pair of fields describing the second
index)

The conversion maps a subset of these onto fields in the Casava
format:

Sample_ID -> SampleID
index -> Index
Sample_Project -> SampleProject
Description -> Description

If no lane information is present in the original file then this
is set to 1. The FCID is set to an arbitrary value.

For dual-indexed samples, the Index field is generated by putting
together the index and index2 fields.

All other fields are left empty.

	Parameters

	
	samplesheet – name of the Miseq sample sheet file

	FCID_default – name to use for flow cell ID if not present in
the source file (optional)

	Returns

	A populated CasavaSampleSheet object.

	
bcftbx.IlluminaData.verify_run_against_sample_sheet(illumina_data, sample_sheet, include_sample_dir=False)

	Checks existence of predicted outputs from a sample sheet

	Parameters

	
	illumina_data – a populated IlluminaData directory

	sample_sheet – path and name of a CSV sample sheet

	include_sample_dir – if True then always include a
‘sample_name’ directory level when checking for
bcl2fastq2 outputs

	Returns

	
	True if all the predicted outputs from the sample sheet are

	found, False otherwise.

	
bcftbx.IlluminaData.samplesheet_index_sequence(line)

	Return the index sequence for a sample sheet line

	Parameters

	line (TabDataLine) – line from a SampleSheet instance

	Returns

	barcode sequence, or ‘None’ if not defined.

	Return type

	String

	
bcftbx.IlluminaData.normalise_barcode(seq)

	Return normalised version of barcode sequence

This standardises the sequence so that:

	all bases are uppercase

	dual index barcodes have ‘-’ and ‘+’ removed

Utility classes and functions

	
class bcftbx.IlluminaData.IlluminaFastq(fastq)

	Class for extracting information about Fastq files

Given the name of a Fastq file from CASAVA/Illumina platform, extract
data about the sample name, barcode sequence, lane number, read number
and set number.

For Fastqs produced by CASAVA and bcl2fastq v1.8, the format of the names
follows the general form:

<sample_name>_<barcode_sequence>_L<lane_number>_R<read_number>_<set_number>.fastq.gz

e.g. for

NA10831_ATCACG_L002_R1_001.fastq.gz

sample_name = ‘NA10831’
barcode_sequence = ‘ATCACG’
lane_number = 2
read_number = 1
set_number = 1

For Fastqs produced by bcl2fast v2, the format looks like:

<sample_name>_S<sample_number>_L<lane_number>_R<read_number>_<set_number>.fastq.gz

e.g. for

NA10831_S4_L002_R1_001.fastq.gz

sample_name = ‘NA10831’
sample_number = 4
lane_number = 2
read_number = 1
set_number = 1

Provides the follow attributes:

fastq: the original fastq file name
sample_name: name of the sample (leading part of the name)
sample_number: number of the same (integer or None, bcl2fastq v2 only)
barcode_sequence: barcode sequence (string or None, CASAVA/bcl2fast v1.8 only)
lane_number: integer
read_number: integer
set_number: integer

	
bcftbx.IlluminaData.describe_project(illumina_project)

	Generate description string for samples in a project

Description string gives the project name and a human-readable
summary of the sample names, plus number of samples and whether
the data is paired end.

Example output: “Project Control: PhiX_1-2 (2 samples)”

	Arguments

	illumina_project: IlluminaProject instance

	Returns

	Description string.

	
bcftbx.IlluminaData.fix_bases_mask(bases_mask, barcode_sequence)

	Adjust input bases mask to match actual barcode sequence lengths

Updates the bases mask string extracted from RunInfo.xml so that the
index read masks correspond to the index barcode sequence lengths
given e.g. in the SampleSheet.csv file.

For example: if the bases mask is ‘y101,I7,y101’ (i.e. assigning 7
cycles to the index read) but the barcode sequence is ‘CGATGT’ (i.e.
only 6 bases) then the adjusted bases mask should be ‘y101,I6n,y101’.

	Parameters

	
	bases_mask – bases mask string e.g. ‘y101,I7,y101’,’y250,I8,I8,y250’

	barcode_sequence – index barcode sequence e.g. ‘CGATGT’ (single

	'TAAGGCGA-TAGATCGC' (index),) –

	Returns

	Updated bases mask string.

	
bcftbx.IlluminaData.get_unique_fastq_names(fastqs)

	Generate mapping of full fastq names to shorter unique names

Given an iterable list of Illumina file fastq names, return a
dictionary mapping each name to its shortest unique form within
the list.

	Parameters

	fastqs – an iterable list of fastq names

	Returns

	Dictionary mapping fastq names to shortest unique versions

	
bcftbx.IlluminaData.split_run_name(dirname)

	Split an Illumina directory run name into components

Given a directory for an Illumina run, e.g.

140210_M00879_0031_000000000-A69NA

split the name into components and return as a tuple:

(date_stamp,instrument_name,run_number)

e.g.

(‘140210’,’M00879’,’0031’)

Note that this function doesn’t return the flow cell ID;
use the split_run_name_full function to also extract
the flow cell information.

	
bcftbx.IlluminaData.summarise_projects(illumina_data)

	Short summary of projects, suitable for logging file

The summary description is a one line summary of the project names
along with the number of samples in each, and an indication if the
run was paired-ended.

	Parameters

	illumina_data – a populated IlluminaData directory

	Returns

	Summary description.

Exception classes

	
class bcftbx.IlluminaData.IlluminaDataError

	Base class for errors with Illumina-related code

bcftbx.SolidData

Provides classes for extracting data about SOLiD runs from directory
structure, data files and naming conventions.

Typical usage is to create a new SolidRun instance by pointing it at
the top-level output directory produced by the sequencer:

>>> solid_run = SolidRun('/path/to/solid0123_20141225_FRAG_BC')

This will automatically attempt to collect the data about the run, which
can then be accessed via other objects linked through the SolidRun
object’s properties.

The most useful are:

	SolidRun.run_info: a SolidRunInfo object which holds data extracted
from the run name (e.g. instrument, datestamp etc)

	SolidRun.samples: a list of SolidSample objects which hold data about
each of the samples in the run.

Each sample in turn holds a list of libraries within that sample
(SolidLibrary objects in ‘SolidSample.libraries’) and a list of projects
(SolidProject objects in ‘SolidSample.projects’). The ‘getLibrary’ and
‘getProject’ methods also provide ways to look up specific libraries
or projects.

Projects are groupings of libraries (based on library names) which are
assumed to form a single experiment. The libraries within a project can
be obtained via the SolidLibrary.projects, or using the ‘getLibrary’
method.

Finally, SolidLibrary objects hold data about the location of the
primary data files. The ‘SolidLibrary.csfasta’ and ‘SolidLibrary.qual’
properties hold the locations of the data for the F3 reads, while for
paired-end runs the ‘SolidLibrary.csfasta_f5’ and ‘SolidLibrary.qual_f5’
properties point to the F5 reads.

(The ‘is_paired_end’ function can be used to test whether a SolidRun
object holds data for a paired-end run.)

SolidRun

	
class bcftbx.SolidData.SolidRun(solid_run_dir)

	Describe a SOLiD run.

The SolidRun class provides an interface to data about a SOLiD
run. It analyses the SOLiD data directory to look for run
definitions, statistics files and primary data files.

It uses the same terminology as the SETS interface and the data
files produced by the SOLiD instrument, so a run contains
‘samples’ and each sample contains one or more ‘libraries’.

One initialised, access the data about the run via the SolidRun
object’s properties:

	run_dir: directory with the run data

	run_name: name of the run e.g. solid0123_20130426_FRAG_BC

	run_info: a SolidRunInfo object with data derived from the run name

	run_definition: a SolidRunDefinition object with data extracted from
the run_definition.txt file

	samples: a list of SolidSample objects representing the samples in
the run

	
class bcftbx.SolidData.SolidRunInfo(run_name)

	Extract data about a run from the run name

Run names are of the form ‘solid0123_20130426_FRAG_BC_2’

This class analyses the name and breaks it down into components
that can be accessed as object properties, specifically:

name: the supplied run name
instrument: the instrument name e.g. solid0123
datestamp: e.g. 20130426
is_fragment_library: True or False
is_barcoded_sample: True or False
flow_cell: 1 or 2
date: datestamp reformatted as DD/MM/YY
id: the run name without any flow cell identifier

	
class bcftbx.SolidData.SolidRunDefinition(run_definition_file)

	Class to store data from a SOLiD run definition file

Once the SolidRunDefinition object is populated from a run
definition file, use the ‘nSamples’ method to find out how
many ‘samples’ (actually sample/library pairs) are defined,
and the ‘fields’ method to get a list of column headings for
each.

Data can be extracted for each sample using the ‘getDataItem’
method to look up the value for a particular field on a
particular line, e.g.:

>>> library = run_defn.getDataItem('library',0)

The SolidRunDefinition object also has a number of attributes
populated from the header of the run definition file,
specifically:

version, userId, runType, isMultiplexing, runName, runDesc,
mask and protocol.

The attributes are strings and can be accessed directly from
the object, e.g.:

>>> version = run_defn.version
>>> isMultiplexing = run_defn.isMultiplexing

	
class bcftbx.SolidData.SolidBarcodeStatistics(barcode_statistics_file)

	Store data from a SOLiD BarcodeStatistics file

	
class bcftbx.SolidData.SolidProject(name, run=None, sample=None)

	Class to hold information about a SOLiD ‘project’

A SolidProject object holds a collection of libraries which
together constitute a ‘project’.

The definition of a ‘project’ is quite loose in this context:
essentially it’s a grouping of libraries within a sample.
Typically the grouping is by the initial letters of the library
name e.g. DR for DR1, EP for EP_NCYC2669 - but this determination
is made at the application level.

Libraries are added to the project via the addLibrary method.
Data about the project can be accessed via the following
properties:

name: the project name (supplied on object creation)
libraries: a list of libraries in the project

Also has the following methods:

	getSample(): returns the parent SolidSample

	getRun(): returns the parent SolidRun

	isBarcoded(): returns boolean indicating whether the libraries
in the sample are barcoded

SolidSample

	
class bcftbx.SolidData.SolidSample(name, parent_run=None)

	Store information about a sample in a SOLiD run.

A sample has a name and contains a set of libraries.
The information about the sample can be accessed via the
following properties:

	name: the sample name

	libraries: a list of SolidLibrary objects representing the libraries
within the sample

	projects: a list of SolidProject objects representing groups of
related libraries within the sample

	unassigned: SolidProject object representing the ‘unassigned’ data

	barcode_stats: a SolidBarcodeStats object with data extracted from
the BarcodeStatistics file (or None, if no file was available)

	parent_run: the parent SolidRun object, or None.

The class also provides the following methods:

	addLibrary: to create and append a SolidLibrary object

	getLibrary: fetch an existing SolidLibrary

	getProject: fetch an existing SolidProject

Typically the calling subprogram calls the ‘addLibrary’ method to
add a SolidLibrary object, which it then populates itself.

The SolidSample class automatically creates SolidProject objects
based on the library names to group libraries considered to belong
to the same experiments.

SolidLibrary

	
class bcftbx.SolidData.SolidLibrary(name, parent_sample=None)

	Store information about a SOLiD library.

The following properties hold data about the library:

	name: the library name

	initials: the experimenter’s initials

	prefix: the library name prefix (i.e. name without the trailing
numbers)

	index_as_string: the trailing numbers from the name, as a string
(preserves any leading zeroes)

	index: the trailing numbers from the name as an integer

	csfasta: full path to the csfasta file for the library (F3 reads)

	qual: full path to qual file for the library (F3 reads)

	csfasta_f5: full path to the F5 read (paired-end runs, otherwise
will be None)

	qual_f5: full path to the F5 read (paired-end runs, otherwise will
be None)

	primary_data: list of SolidPrimaryData objects for all possible
primary data file pairs associated with the library

	parent_sample: parent SolidSample object, or None.

The following methods are also available:

	addPrimaryData: creates a new SolidPrimaryData object and appends
to the list in the primary_data property

SolidPrimaryData

	
class bcftbx.SolidData.SolidPrimaryData

	Class to store references to primary data files

This is a convenience class for storing references to csfasta/qual
file pairs within a SolidLibrary instance.

The class provides the following attributes:

csfasta: full path to csfasta file
qual: full path to qual file
timestamp: timestamp associated with the file pair
type: string indicating ‘F3’ or ‘F5’, or None

The following methods are provided:

is_f3: indicates if data is F3
is_f5: indicates if data is F5

Functions

	
bcftbx.SolidData.extract_library_timestamp(path)

	Extract the timestamp string from a path

Given a path of the form ‘/path/to/data/…/primary.1234567/…’,
return the timestamp string attached to the ‘primary.XXXXXXX’
component of the name.

	Parameters

	path – absolute or relative path to arbitrary directory or
file in the SOLiD data structure

	Returns

	Timestamp string, or None if no timestamp was identified.

	
bcftbx.SolidData.get_primary_data_file_pair(dirn)

	Return csfasta/qual file pair from specified directory

	Parameters

	dirn – directory to search for csfasta/qual pair

	Returns

	Tuple (csfasta,qual) with full path for each file, or
(None,None) if a pair wasn’t located.

	
bcftbx.SolidData.is_paired_end(solid_run)

	Determine if a SolidRun instance is a paired-end run

	Parameters

	solid_run – a populated SolidRun instance

	Returns

	True if this is a paired-end run, False otherwise.

	
bcftbx.SolidData.match(pattern, word)

	Check if a word matches pattern

Implements a very simple pattern matching algorithm, which allows
only exact matches or glob-like strings (i.e. using a trailing ‘*’
to indicate a wildcard).

For example: ‘ABC*’ matches ‘ABC’, ‘ABC1’, ‘ABCDEFG’ etc, while
‘ABC’ only matches itself.

	Parameters

	
	pattern – simple glob-like pattern

	word – string to test against ‘pattern’

	Returns

	True if ‘word’ is a match to ‘pattern’, False otherwise.

	
bcftbx.SolidData.slide_layout(nsamples)

	Description of the slide layout based on number of samples

	Parameters

	nsamples – number of samples in the run

	Returns

	A string describing the slide layout for the run based on the
number of samples in the run, e.g. “Whole slide”, “Quads”,
“Octets” etc. Returns None if the number of samples doesn’t
map to a recognised layout.

bcftbx.Experiment

Experiment.py

The Experiment module provides two classes: the Experiment class defines
a single experiment (essentially a collection of one or more related
primary data sets) from a SOLiD run; the ExperimentList class is a
collection of experiments which are typically part of the same SOLiD run.

	
class bcftbx.Experiment.Experiment

	Class defining an experiment from a SOLiD run.

An ‘experiment’ is a collection of related data.

	
copy()

	Return a new Experiment instance which is a copy of this one.

	
describe()

	Describe the experiment as a set of command line options

	
dirname(top_dir=None)

	Return directory name for experiment

The directory name is the supplied name plus the experiment
type joined by an underscore, unless no type was specified (in
which case it is just the experiment name).

If top_dir is also supplied then this will be prepended to the
returned directory name.

	
class bcftbx.Experiment.ExperimentList(solid_run_dir=None)

	Container for a collection of Experiments

Experiments are created and added to the ExperimentList by calling
the addExperiment method, which returns a new Experiment object.

The calling subprogram then populates the Experiment properties as
appropriate.

Once all Experiments are defined the analysis directory can be
constructed by calling the buildAnalysisDirs method, which creates
directories and symbolic links to primary data according to the
definition of each experiment.

	
addDuplicateExperiment(expt)

	Duplicate an existing Experiment and add to the list

	Parameters

	expt – an existing Experiment object

	Returns

	New Experiment object with the same data as the input

	
addExperiment(name)

	Create a new Experiment and add to the list

	Parameters

	name – the name of the new experiment

	Returns

	New Experiment object with name already set

	
buildAnalysisDirs(top_dir=None, dry_run=False, link_type='relative', naming_scheme='partial')

	Construct and populate analysis directories for the experiments

For each defined experiment, create the required analysis directories
and populate with links to the primary data files.

	Parameters

	
	top_dir – if set then create the analysis directories as
subdirs of the specified directory; otherwise operate in cwd

	dry_run – if True then only report the mkdir, ln etc operations that
would be performed. Default is False (do perform the operations).

	link_type – type of link to use when linking to primary data, one of
‘relative’ or ‘absolute’.

	naming_scheme – naming scheme to use for links to primary data, one of
‘full’ (same names as primary data files), ‘partial’ (cut-down version
of the full name which excludes sample names - the default), or
‘minimal’ (just the library name).

	
getLastExperiment()

	Return the last Experiment added to the list

	
class bcftbx.Experiment.LinkNames(scheme)

	Class to construct names for links to primary data files

The LinkNames class encodes a set of naming schemes that are used to
construct names for the links in the analysis directories that point
to the primary CFASTA and QUAL data files.

The schemes are:

	full: link name is the same as the source file, e.g.

	solid0123_20111014_FRAG_BC_AB_CD_EF_pool_F3_CD_PQ5.csfasta

	partial: link name consists of the instrument name, datestamp and

	library name, e.g.
solid0123_20111014_CD_PQ5.csfasta

	minimal: link name consists of just the library name, e.g.

	CD_PQ5.csfasta

For paired-end data, the ‘partial’ and ‘minimal’ names have ‘_F3’ and
‘_F5’ appended as appropriate (full names already have this distinction).

Example usage:

To get the link names using the minimal scheme for the F3 reads (‘library’
is a SolidLibrary object):

>>> csfasta_lnk,qual_lnk = LinkNames('minimal').names(library)

To get names for the F5 reads using the partial scheme:

>>> csfasta_lnk,qual_lnk = LinkNames('partial').names(library,F5=True)

	
names(library, F5=False)

	Get names for links to the primary data in a library

Returns a tuple of link names:

(csfasta_link_name,qual_link_name)

derived from the data in the library plus the naming scheme
specified when the LinkNames object was created.

	Parameters

	
	library – SolidLibrary object

	F5 – if True then indicates that names should be returned
for linking to the F5 reads (default is F3 reads)

bcftbx.FASTQFile

A set of classes for reading through FASTQ files and manipulating
the data within them:

	FastqIterator: enables looping through all read records in FASTQ file

	FastqRead: provides access to a single FASTQ read record

	SequenceIdentifier: provides access to sequence identifier info in a read

	FastqAttributes: provides access to gross attributes of FASTQ file

Additionally there are a few utility functions:

	get_fastq_file_handle: return a file handled opened for reading a FASTQ file

	nreads: return the number of reads in a FASTQ file

	fastqs_are_pair: check whether two FASTQs form an R1/R2 pair

Information on the FASTQ file format: http://en.wikipedia.org/wiki/FASTQ_format

	
class bcftbx.FASTQFile.FastqAttributes(fastq_file=None, fp=None)

	Class to provide access to gross attributes of a FASTQ file

Given a FASTQ file (can be uncompressed or gzipped), enables
various attributes to be queried via the following properties:

nreads: number of reads in the FASTQ file
fsize: size of the file (in bytes)

	
fsize

	Return size of the FASTQ file (bytes)

	
nreads

	Return number of reads in the FASTQ file

	
class bcftbx.FASTQFile.FastqIterator(fastq_file=None, fp=None, bufsize=102400)

	Class to loop over all records in a FASTQ file, returning a FastqRead
object for each record.

Example looping over all reads:

>>> for read in FastqIterator(fastq_file):
>>> print(read)

Input FASTQ can be in gzipped format; FASTQ data can also be supplied
as a file-like object opened for reading, for example:

>>> fp = io.open(fastq_file,'rt')
>>> for read in FastqIterator(fp=fp):
>>> print(read)
>>> fp.close()

	
class bcftbx.FASTQFile.FastqRead(seqid_line=None, seq_line=None, optid_line=None, quality_line=None)

	Class to store a FASTQ record with information about a read

Provides the following properties for accessing the read data:

	seqid: the “sequence identifier” information (first line of the
read record) as a SequenceIdentifier object

	sequence: the raw sequence (second line of the record)

	optid: the optional sequence identifier line (third line of the
record)

	quality: the quality values (fourth line of the record)

Additional properties:

	raw_seqid: the original sequence identifier string supplied
when the object was created

	seqlen: length of the sequence

	maxquality: maximum quality value (in character representation)

	minquality: minimum quality value (in character representation)

	is_colorspace: returns True if the read looks like a colorspace
read, False otherwise

Note

Quality scores can only be obtained from character
representations once the encoding scheme is known.

	
class bcftbx.FASTQFile.SequenceIdentifier(seqid)

	Class to store/manipulate sequence identifier information from a FASTQ record

Provides access to the data items in the sequence identifier line of a FASTQ
record.

	
format

	Identify the format of the sequence identifier

	Returns

	‘illumina18’, ‘illumina’ or None

	Return type

	String

	
is_pair_of(seqid)

	Check if this forms a pair with another SequenceIdentifier

	
bcftbx.FASTQFile.fastqs_are_pair(fastq1=None, fastq2=None, verbose=True, fp1=None, fp2=None)

	Check that two FASTQs form an R1/R2 pair

	Parameters

	
	fastq1 – first FASTQ

	fastq2 – second FASTQ

	Returns

	True if each read in fastq1 forms an R1/R2 pair with the equivalent
read (i.e. in the same position) in fastq2, otherwise False if
any do not form an R1/R2 (or if there are more reads in one than
than the other).

	
bcftbx.FASTQFile.get_fastq_file_handle(fastq, mode='rt')

	Return a file handle opened for reading for a FASTQ file

Deals with both compressed (gzipped) and uncompressed FASTQ
files.

	Parameters

	
	fastq – name (including path, if required) of FASTQ file.
The file can be gzipped (must have ‘.gz’ extension)

	mode – optional mode for file opening (defaults to ‘rt’)

	Returns

	File handle that can be used for read operations.

	
bcftbx.FASTQFile.nreads(fastq=None, fp=None)

	Return number of reads in a FASTQ file

Performs a simple-minded read count, by counting the number of lines
in the file and dividing by 4.

The FASTQ file can be specified either as a file name (using the ‘fastq’
argument) or as a file-like object opened for line reading (using the
‘fp’ argument).

This function can handle gzipped FASTQ files supplied via the ‘fastq’
argument.

Line counting uses a variant of the “buf count” method outlined here:
http://stackoverflow.com/a/850962/579925

	Parameters

	
	fastq – fastq(.gz) file

	fp – open file descriptor for fastq file

	Returns

	Number of reads

bcftbx.JobRunner

Classes for starting, stopping and managing jobs.

Class BaseJobRunner is a template with methods that need to be implemented
by subclasses. The subclasses implemented here are:

	SimpleJobRunner: run jobs (e.g. scripts) on a local file system.

	GEJobRunner : run jobs using Grid Engine (GE) i.e. qsub, qdel etc

A single JobRunner instance can be used to start and manage multiple processes.

Each job is started by invoking the ‘run’ method of the runner. This returns
an id string which is then used in calls to the ‘isRunning’, ‘terminate’ etc
methods to check on and control the job.

The runner’s ‘list’ method returns a list of running job ids.

Simple usage example:

>>> # Create a JobRunner instance
>>> runner = SimpleJobRunner()
>>> # Start a job using the runner and collect its id
>>> job_id = runner.run('Example',None,'myscript.sh')
>>> # Wait for job to complete
>>> import time
>>> while runner.isRunning(job_id):
>>> time.sleep(10)
>>> # Get the names of the output files
>>> log,err = (runner.logFile(job_id),runner.errFile(job_id))

Processes run using a job runner inherit the environment where the runner
is created and executed.

Additionally runners set an ‘BCFTBX_RUNNER_NSLOTS’ environment variable,
which is set to the number of slots (aka CPUs/cores/threads) available to
processes executed by the runner. For both ‘SimpleJobRunner’ and
‘GEJobRunner’, this defaults to one (i.e. serial jobs); the ‘nslots’
option can be used when instantiating ‘SimpleJobRunner’ objects to
specify more cores, for example:

>>> multicore_runner = SimpleJobRunner(nslots=4)

For ‘GEJobRunner’ instances the number of cores is set by specifying
‘-pe smp.pe’ as part of the ‘ge_extra_args’ option, for example:

>>> multicore_runner = GEJobRunner(extra_ge_args=('-pe','smp.pe','4'))

	
class bcftbx.JobRunner.BaseJobRunner

	Base class for implementing job runners

This class can be used as a template for implementing custom
job runners. The idea is that the runners wrap the specifics
of interacting with an underlying job control system and thus
provide a generic interface to be used by higher level classes.

A job runner needs to implement the following methods:

	run : starts a job running

	terminate : kills a running job

	list : lists the running job ids

	logFile : returns the name of the log file for a job

	errFile : returns the name of the error file for a job

	exit_status: returns the exit status for the command (or
None if the job is still running)

Optionally it can also implement the methods:

	errorState: indicates if running job is in an “error state”

	isRunning : checks if a specific job is running

if the default implementations are not sufficient.

	
errFile(job_id)

	Return name of error file relative to working directory

	
errorState(job_id)

	Check if the job is in an error state

Return True if the job is deemed to be in an ‘error state’,
False otherwise.

	
exit_status(job_id)

	Return the exit status code for the command

Return the exit status code from the command that was
run by the specified job, or None if the job hasn’t
exited yet.

	
isRunning(job_id)

	Check if a job is running

Returns True if job is still running, False if not

	
list()

	Return a list of running job_ids

	
logFile(job_id)

	Return name of log file relative to working directory

	
log_dir

	Return the current log directory setting

	
run(name, working_dir, script, args)

	Start a job running

	Parameters

	
	name – Name to give the job

	working_dir – Directory to run the job in

	script – Script file to run

	args – List of arguments to supply to the script

	Returns

	Returns a job id, or None if the job failed to start

	
set_log_dir(log_dir)

	(Re)set the directory to write log files to

	
terminate(job_id)

	Terminate a job

Returns True if termination was successful, False
otherwise

	
class bcftbx.JobRunner.GEJobRunner(queue=None, log_dir=None, ge_extra_args=None, poll_interval=5.0, timeout=30.0)

	Class implementing job runner for Grid Engine

GEJobRunner submits jobs to a Grid Engine cluster using the
‘qsub’ command, determines the status of jobs using ‘qstat’
and terminates then using ‘qdel’.

Additionally the runner can be configured for a specific GE
queue on initialisation.

Each GEJobRunner instance creates a temporary directory which
it uses for internal admin; this will be removed at program
exit via ‘atexit’.

	
errFile(job_id)

	Return the error file name for a job

The name should be ‘<name>.e<job_id>’

	
errorState(job_id)

	Check if the job is in an error state

Return True if the job is deemed to be in an ‘error
state’ (i.e. qstat returns the state as ‘E..’),
False otherwise.

	
exit_status(job_id)

	Return exit status from command run by a job

If the job is still running then returns ‘None’.

	
ge_extra_args

	Return the extra GE arguments

	
list()

	Get list of job ids which are queued or running

	
logFile(job_id)

	Return the log file name for a job

The name should be ‘<name>.o<job_id>’

	
name(job_id)

	Return the name for a job

	
nslots

	Return the number of associated slots

This is extracted from the ‘ge_extra_args’
property, by looking for qsub options of the
form ‘-pe smp.pe N’ (in which case ‘nslots’
will be N).

	
queue(job_id)

	Fetch the job queue name

Returns the queue as reported by qstat, or None if
not found.

	
run(name, working_dir, script, args)

	Submit a script or command to the cluster via ‘qsub’

	Parameters

	
	name – Name to give the job

	working_dir – Directory to run the job in

	script – Script file to run

	args – List of arguments to supply to the script

	Returns

	Job id for submitted job, or ‘None’ if job failed to
start.

	
terminate(job_id)

	Remove a job from the GE queue using ‘qdel’

	
class bcftbx.JobRunner.ResourceLock

	Class for managing in-process locks on ‘resources’

A ‘resource’ is identified by an arbitrary string.

Example usage: create a new ResourceLock instance
and check if a resource is locked:

>>> r = ResourceLock()
>>> r.is_locked("resource1")
False

Try to acquire the lock on the resource:

>>> lock = r.acquire("resource1")
>>> r.is_locked("resource1")
True

Release the lock on the resource:

>>> r.release(lock)
>>> r.is_locked("resource1")
False

	
acquire(resource_name, timeout=None)

	Attempt to acquire the lock on a resource

	Parameters

	
	resource_name (str) – name of the resource
to acquire the lock name for

	timeout (float) – optional, specifies a
timeout period after which failure to
acquire the lock raises an exception.

	Returns

	lock name.

	Return type

	String

	
is_locked(resource_name)

	Check if a resource is locked

	Parameters

	resource_name (str) – name of the resource
to check the lock for

	Returns

	
	True if resource is locked, False

	if not.

	Return type

	Boolean

	
release(lock)

	Release a lock on a resource

	Parameters

	lock (str) – lock to release.

	
class bcftbx.JobRunner.SimpleJobRunner(log_dir=None, join_logs=False, nslots=1)

	Class implementing job runner for local system

SimpleJobRunner starts jobs as processes on a local system;
the status of jobs is determined using the Linux ‘ps eu’
command, and jobs are terminated using ‘kill -9’.

	
errFile(job_id)

	Return the error file name for a job

	
exit_status(job_id)

	Return exit status from command run by a job

	
list()

	Return a list of running job_ids

	
logFile(job_id)

	Return the log file name for a job

	
name(job_id)

	Return the name for a job

	
nslots

	Return the number of associated slots

	
run(name, working_dir, script, args)

	Run a command and return the PID (=job id)

	Parameters

	
	name – Name to give the job

	working_dir – Directory to run the job in

	script – Script file to run

	args – List of arguments to supply to the script

	Returns

	Job id for submitted job, or ‘None’ if job failed to
start.

	
terminate(job_id)

	Kill a running job using ‘kill -9’

	
bcftbx.JobRunner.fetch_runner(definition)

	Return job runner instance based on a definition string

Given a definition string, returns an appropriate runner
instance.

Definitions are of the form:

RunnerName[(args)]

RunnerName can be ‘SimpleJobRunner’ or ‘GEJobRunner’.
If ‘(args)’ are also supplied then:

	for SimpleJobRunners, this can be a list of optional
arguments separated by spaces:

	‘nslots=N’ (where N is an integer; sets a non-default
number of slots

	‘join_logs=BOOLEAN’ (where BOOLEAN can be ‘True’,
‘true’,’y’,’False’,’false’,’n’; sets whether stdout
and stderr should be written to the same file)

	for GEJobRunners, this is a set of arbitrary ‘qsub’
options that will be used on job submission.

bcftbx.Pipeline

Classes for running scripts iteratively over a collection of data files.

The essential classes are:

	Job: wrapper for setting up, submitting and monitoring running
scripts

	PipelineRunner: queue and run script multiple times on standard set
of inputs

	SolidPipelineRunner: subclass of PipelineRunner specifically for
running on SOLiD data (i.e. pairs of csfasta/qual files)

There are also some useful methods:

	GetSolidDataFiles: collect csfasta/qual file pairs from a specific
directory

	GetSolidPairedEndFiles: collect csfasta/qual file pairs for paired
end data

	GetFastqFiles: collect fastq files from a specific directory

	GetFastqGzFiles: collect gzipped fastq files

The PipelineRunners depend on the JobRunner instances (created from
classes in the JobRunner module) to interface with the job management
system. So typical usage might look like:

>>> import JobRunner
>>> import Pipeline
>>> runner = JobRunner.GEJobRunner() # to use Grid Engine
>>> pipeline = Pipeline.PipelineRunner(runner)
>>> pipeline.queueJob(...)
>>> pipeline.run()

Classes

	
class bcftbx.Pipeline.Job(runner, name, dirn, script, args, label=None, group=None)

	Wrapper class for setting up, submitting and monitoring running scripts

Set up a job by creating a Job instance specifying the name, working directory,
script file to execute, and arguments to be supplied to the script.

The job is started by invoking the ‘start’ method; its status can be checked
with the ‘isRunning’ method, and terminated and restarted using the ‘terminate’
and ‘restart’ methods respectively.

Information about the job can also be accessed via its properties. The following
properties record the original parameters supplied on instantiation:

name
working_dir
script
args
label
group_label

Additional information is set once the job has started or stopped running:

job_id The id number for the running job returned by the JobRunner
log The log file for the job (relative to working_dir)
err The error log file for the job
start_time The start time (seconds since the epoch)
end_time The end time (seconds since the epoch)
exit_status The exit code from the command that was run (integer, or None)

The Job class uses a JobRunner instance (which supplies the necessary methods for
starting, stopping and monitoring) for low-level job interactions.

	
class bcftbx.Pipeline.PipelineRunner(runner, max_concurrent_jobs=4, poll_interval=30, jobCompletionHandler=None, groupCompletionHandler=None)

	Class to run and manage multiple concurrent jobs.

PipelineRunner enables multiple jobs to be queued via the ‘queueJob’ method. The
pipeline is then started using the ‘run’ method - this starts each job up to a
a specified maximum of concurrent jobs, and then monitors their progress. As jobs
finish, pending jobs are started until all jobs have completed.

Example usage:

>>> p = PipelineRunner()
>>> p.queueJob('/home/foo','foo.sh','bar.in')
... Queue more jobs ...
>>> p.run()

By default the pipeline runs in ‘blocking’ mode, i.e. ‘run’ doesn’t return until all
jobs have been submitted and have completed; see the ‘run’ method for details of
how to operate the pipeline in non-blocking mode.

The invoking subprogram can also specify functions that will be called when a job
completes (‘jobCompletionHandler’), and when a group completes
(‘groupCompletionHandler’). These can perform any specific actions that are required
such as sending notification email, setting file ownerships and permissions etc.

	
class bcftbx.Pipeline.SolidPipelineRunner(runner, script, max_concurrent_jobs=4, poll_interval=30)

	Class to run and manage multiple jobs for Solid data pipelines

Subclass of PipelineRunner specifically for dealing with scripts
that take Solid data (i.e. csfasta/qual file pairs).

Defines the addDir method in addition to all methods already defined
in the base class; use this method one or more times to specify
directories with data to run the script on. The SOLiD data file pairs
in each specified directory will be located automatically.

For example:

solid_pipeline = SolidPipelineRunner(‘qc.sh’)
solid_pipeline.addDir(‘/path/to/datadir’)
solid_pipeline.run()

Functions

	
bcftbx.Pipeline.GetSolidDataFiles(dirn, pattern=None, file_list=None)

	Return list of csfasta/qual file pairs in target directory

Note that files with names ending in ‘_T_F3’ will be rejected
as these are assumed to come from the preprocess filtering stage.

Optionally also specify a regular expression pattern that file
names must also match in order to be included.

	Parameters

	
	dirn – name/path of directory to look for files in

	pattern – optional, regular expression pattern to filter names with

	file_list – optional, a list of file names to use instead of
fetching a list of files from the specified directory

	Returns

	List of tuples consisting of two csfasta-qual file pairs (F3 and F5).

	
bcftbx.Pipeline.GetSolidPairedEndFiles(dirn, pattern=None, file_list=None)

	Return list of csfasta/qual file pairs for paired end data

Optionally also specify a regular expression pattern that file
names must also match in order to be included.

	Parameters

	
	dirn – name/path of directory to look for files in

	pattern – optional, regular expression pattern to filter names with

	file_list – optional, a list of file names to use instead of
fetching a list of files from the specified directory

	Returns

	List of csfasta-qual pair tuples.

	
bcftbx.Pipeline.GetFastqFiles(dirn, pattern=None, file_list=None)

	Return list of fastq files in target directory

Optionally also specify a regular expression pattern that file
names must also match in order to be included.

	Parameters

	
	dirn – name/path of directory to look for files in

	pattern – optional, regular expression pattern to filter names with

	file_list – optional, a list of file names to use instead of
fetching a list of files from the specified directory

	Returns

	List of file-pair tuples.

	
bcftbx.Pipeline.GetFastqGzFiles(dirn, pattern=None, file_list=None)

	Return list of fastq.gz files in target directory

Optionally also specify a regular expression pattern that file
names must also match in order to be included.

	Parameters

	
	dirn – name/path of directory to look for files in

	pattern – optional, regular expression pattern to filter names with

	file_list – optional, a list of file names to use instead of
fetching a list of files from the specified directory

	Returns

	List of file-pair tuples.

bcftbx.Md5sum

Md5sum

Classes and functions for performing various MD5 checksum operations.

The code function is the ‘md5sum’ function, which computes the MD5 hash for
a file and is based on examples at:

http://www.python.org/getit/releases/2.0.1/md5sum.py

and

http://stackoverflow.com/questions/1131220/get-md5-hash-of-a-files-without-open-it-in-python

Usage:

>>> import Md5sum
>>> Md5Sum.md5sum("myfile.txt")
... eacc9c036025f0e64fb724cacaadd8b4

This module implements two methods for generating the md5 digest of a file:
the first uses a method based on the hashlib module, while the second (used
as a fallback for pre-2.5 Python) uses the now deprecated md5 module. Note
however that the md5sum function determines itself which method to use.

There is also a high-level class ‘Md5Checker’ which implements various
class methods for running MD5 checks across all files in a directory, and
a wrapper class ‘Md5Reporter’ which

	
class bcftbx.Md5sum.Md5CheckReporter(results=None, verbose=False, fp=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Provides a generic reporting class for Md5Checker methods

Typical usage modes are either:

>>> r = Md5CheckReporter()
>>> for f,s in Md5Checker.md5cmp_dirs(d1,d2):
... r.add_result(f,s)

or more concisely:

>>> r = Md5CheckReporter(Md5Checker.md5cmp_dirs(d1,d2))

Use the ‘summary’ method to generate a summary of all the checks.

Use the ‘status’ method to get a single indicator of success or
failure which is consistent with UNIX-style return codes.

To find out how many results were processed in total, how many
failed etc use the following properties:

	n_files : total number of results examined

	n_ok : number that passed MD5 checks (MD5_OK)

	n_failed : number that failed due to different MD5 sums (MD5_FAILED)

	n_missing: number that failed due to a missing target file
(MISSING_TARGET)

	n_errors : number that had errors calculating their MD5 sums
(MD5 ERROR)

	
add_result(f, status)

	Add a result to the reporter

Takes a file and an Md5Checker status code and adds
it to the results.

If the status code indicates a failed check then the
file name is added to a list corresponding to the
nature of the failure (e.g. MD5 sums didn’t match,
target was missing etc).

	
n_errors

	Number of files with errors checking MD5 sums

	
n_failed

	Number of failed MD5 sum checks

	
n_files

	Total number of files checked

	
n_missing

	Number of missing files

	
n_ok

	Number of passed MD5 sum checks

	
status

	Return status code

Returns 0 if all files that were checked passed the MD5 check, or
1 if at least one file failed the check for whatever reason.

	
summary()

	Write a summary of the results

Writes a summary of the number of files checked, how many passed
or failed MD5 checks and so on, to the specified output stream.

	
class bcftbx.Md5sum.Md5Checker

	Provides static methods for performing checks using MD5 sums

The Md5Checker class is a collection of static methods that can
be used for performing checks using MD5 sums.

It also provides a set of constants to

	
classmethod compute_md5sums(d, links=0)

	Calculate MD5 sums for all files in directory

Given a directory, traverses the structure underneath (including
subdirectories) and yields the path and MD5 sum for each file that
is found.

The ‘links’ option determines how symbolic links are handled, see
the ‘walk’ function for details.

	Parameters

	
	dirn – name of the top-level directory

	links – (optional) specify how symbolic links are handled

	Returns

	Yields a tuple (f,md5) where f is the path of a file relative to
the top-level directory, and md5 is the calculated MD5 sum.

	
classmethod md5_walk(dirn, links=0)

	Calculate MD5 sums for all files in directory

Given a directory, traverses the structure underneath (including
subdirectories) and yields the path and MD5 sum for each file that
is found.

The ‘links’ option determines how symbolic links are handled, see
the ‘walk’ function for details.

	Parameters

	
	dirn – name of the top-level directory

	links – (optional) specify how symbolic links are handled

	Returns

	Yields a tuple (f,md5) where f is the path of a file relative to
the top-level directory, and md5 is the calculated MD5 sum.

	
classmethod md5cmp_dirs(d1, d2, links=0)

	Compares the contents of one directory with another using MD5 sums

Given two directory names ‘d1’ and ‘d2’, compares the MD5 sum of
each file found in ‘d1’ against that of the equivalent file in ‘d2’,
and yields the result as an Md5checker constant for each file pair,
i.e.:

MD5_OK: if MD5 sums match;
MD5_FAILED: if MD5 sums differ.

If the equivalent file doesn’t exist then yields MISSING_TARGET.

If one or both MD5 sums cannot be computed then yields MD5_ERROR.

How symbolic links are handled depends on the setting of the ‘links’
option:

	FOLLOW_LINKS: (default) MD5 sums are computed and compared for

	the targets of symbolic links. Broken links are
treated as if the file was missing.

	IGNORE_LINKS: MD5 sums are not computed or compared if either file

	is a symbolic link, and links to directories are
not followed.

	Parameters

	
	d1 – ‘reference’ directory

	d2 – ‘target’ directory to be compared with the reference

	links – (optional) specify how symbolic links are handled.

	Returns

	Yields a tuple (f,status) where f is the relative path of the
file pair being compared, and status is the Md5Checker constant
representing the outcome of the comparison.

	
classmethod md5cmp_files(f1, f2)

	Compares the MD5 sums of two files

Given two file names, attempts to compute and compare their
MD5 sums.

If the MD5s match then returns MD5_OK, if they don’t match
then returns MD5_FAILED.

If one or both MD5 sums cannot be computed then returns
MD5_ERROR.

Note that if either file is a link then MD5 sums will be
computed for the link target(s), if they exist and can be
accessed.

	Parameters

	
	f1 – name and path for reference file

	f2 – name and path for file to be checked

	Returns

	Md5Checker constant representing the outcome of the
comparison.

	
classmethod verify_md5sums(filen=None, fp=None)

	Verify md5sums from a file

Given a file (or a file-like object opened for reading), reads
each line and attemps to interpret as an md5sum line i.e. of
the form

<md5 sum> <path/to/file>

e.g.

66b201ae074c36ae9bffec7fb74ff03a md5checker.py

It then attempts to verify the MD5 sum against the file located
on the file system, and yields the result as an Md5checker constant
for each file line i.e.:

MD5_OK: if MD5 sums match;
MD5_FAILED: if MD5 sums differ.

If the file cannot be found then it yields MISSING_TARGET; if
there is a problem computing the MD5 sum then it yields
MD5_ERROR.

	Parameters

	
	filen – name of the file containing md5sum output

	fp – file-like object opened for reading, with md5sum output

	Returns

	Yields a tuple (f,status) where f is the path of the file being
verified (as it appears in the file), and status is the Md5Checker
constant representing the outcome.

	
classmethod walk(dirn, links=0)

	Traverse all files found in a directory structure

Given a directory, traverses the structure underneath (including
subdirectories) and yields the path for each file that is
found.

How symbolic links are handled depends on the setting of the
‘links’ option:

	FOLLOW_LINKS: symbolic links to files are treated as files; links

	to directories are followed.

	IGNORE_LINKS: symbolic links to files are ignored; links to

	directories are not followed.

	Parameters

	
	dirn – name of the top-level directory

	links – (optional) specify how symbolic links are handled

	Returns

	Yields the name and full path for each file under ‘dirn’.

	
bcftbx.Md5sum.md5sum(f)

	Return md5sum digest for a file or stream

This implements the md5sum checksum generation using both
the hashlib module.

	Parameters

	f – name of the file to generate the checksum from, or
a file-like object opened for reading in binary mode.

	Returns

	Md5sum digest for the named file.

bcftbx.platforms

platforms.py

Utilities and data to identify NGS sequencer platforms

	
bcftbx.platforms.get_sequencer_platform(sequencer_name)

	Attempt to determine platform from sequencer name

Checks the supplied sequencer name against the patterns in
PLATFORMS and returns the first match (or None if no match
is found).

	Parameters

	sequencer_name – sequencer name (can include a leading
directory path)

	Returns

	Matching sequencer platform, or None.

	
bcftbx.platforms.list_platforms()

	Return list of known platform names

bcftbx.TabFile

Classes for working with generic tab-delimited data.

The TabFile module provides a TabFile class, which represents a tab-delimited
data file, and a TabDataLine class, which represents a line of data.

Creating a TabFile

TabFile objects can be initialised from existing files:

>>> data = TabFile('data.txt')

or an ‘empty’ TabFile can be created if no file name is specified.

Lines starting with ‘#’ are ignored.

Accessing Data within a TabFile

Within a TabFile object each line of data is represented by a TabDataLine
object. Lines of data are referenced using index notation, with the first
line of data being index zero:

>>> line = data[0]
>>> line = data[i]

Note that the index is not the same as the line number from the source file,
(if one was specified) - this can be obtained from the ‘lineno’ method of
each line:

>>> line_number = line.lineno()

len() gives the total number of lines of data in the TabFile object:

>>> len(data)

It is possible to iterate over the data lines in the object:

>>> for line in data:
>>> ... do something with line ...

By default columns of data in the file are referenced by index notation, with
the first column being index zero:

>>> line = data[0]
>>> value = line[0]

If column headers are specified then these can also be used to reference
columns of data:

>>> data = TabFile('data.txt',column_names=['ex','why','zed'])
>>> line = data[0]
>>> ex = line['ex']
>>> line['why'] = 3.454

Headers can also be read from the first line of an input file:

>>> data = TabFile('data.txt',first_line_is_header=True)

A list of the column names can be fetched using the ‘header’ method:

>>> print(data.header())

Use the ‘str’ built-in to get the line as a tab-delimited string:

>>> str(line)

Adding and Removing Data

New lines can be added to the TabFile object via the ‘append’ and ‘insert’
methods:

>>> data.append() # No data i.e. empty line
>>> data.append(data=[1,2,3]) # Provide data values as a list
>>> data.append(tabdata='1 2 3') # Provide values as tab-delimited string
>>> data.insert(1,data=[5,6,7]) # Inserts line of data at index 1

Type conversion is automatically performed when data values are assigned:

>>> line = data.append(data=['1',2,'3.4','pjb'])
>>> line[0]
1
>>> line[2]
3.4
>>> line[3]
'pjb'

Lines can also be removed using the ‘del’ built-in:

>>> del(data[0]) # Deletes first data line

New columns can be added using the ‘appendColumn’ method e.g.:

>>> data.appendColumn('new_col') # Creates a new empty column

Filtering Data

The ‘lookup’ method returns a set of data lines where a key matches a
specific value:

>>> data = TabFile('data.txt',column_names=['chr','start','end'])
>>> chrom = data.lookup('chr','chrX')

Within a single data line the ‘subset’ method returns a list of values
for a set of column indices or column names:

>>> data = TabFile(column_names=['chr','start','end','strand'])
>>> data.append(data=['chr1',123456,234567,'+'])
>>> data[0].subset('chr1','start')
['chr1',123456]

Sorting Data

The ‘sort’ method offers a simple way of sorting the data lines within
a TabFile. The simplest example is sorting on a specific column:

>>> data.sort(lambda line: line['start'])

See the method documentation for more detail on using the ‘sort’ method.

Manipulating Data: whole column operations

The ‘transformColumn’ and ‘computeColumn’ methods provide a way to
update all the values in a column with a single method call. In each
case the calling subprogram must supply a function object which is
used to update the values in a specific column.

The function supplied to ‘transformColumn’ must take a single
argument which is the current value of the column in that line. For
example: define a function to increment a supplied value by 1:

>>> def addOne(x):
>>> ... return x+1

Then use this to add one to all values in the column ‘start’:

>>> data.transformColumn('start',addOne)

Alternatively a lambda can be used to avoid defining a new function:

>>> data.transformColumn('start',lambda x: x+1)

The function supplied to ‘computeColumn’ must take a single argument
which is the current line (i.e. a TabDataLine object) and return
a new value for the specified column. For example:

>>> def calculateMidpoint(line):
>>> ... return (line['start'] + line['stop'])/2.0
>>> data.computeColumn('midpoint',calculateMidpoint)

Again a lambda expression can be used instead:

>>> data.computeColumn('midpoint',lambda line: line['stop'] - line['start'])

Writing to File

Use the TabFile’s ‘write’ method to output the content to a file:

>>> data.write('newfile.txt') # Writes all the data to newfile.txt

It’s also possible to reorder the columns before writing out using
the ‘reorderColumns’ method.

Specifying Delimiters

It’s possible to use a different field delimiter than tabs, by explicitly
specifying the value of the ‘delimiter’ argument when creating a new
TabFile object, for example for a comma-delimited file:

>>> data = TabFile('data.txt',delimiter=',')

TabFileIterator: iterating through a tab-delimited file

The TabFileIterator provides a light-weight alternative to
TabFile in situations where it is only necessary to iterate
through each line in a tab-delimited file:

>>> for line in TabFileIterator(filen='data.tsv'):
... print(line)

Each line is returned as a TabDataLine instance, so the
methods available that class can be used on the data.

	
class bcftbx.TabFile.TabDataLine(line=None, column_names=None, delimiter='t', lineno=None, convert=True, allow_underscores_in_numeric_literals=False)

	Class to store a line of data from a tab-delimited file

Values can be accessed by integer index or by column names (if
set), e.g.

line = TabDataLine(“1 2 3”,(‘first’,’second’,’third’))

allows the 2nd column of data to accessed either via line[1] or
line[‘second’].

Values can also be changed, e.g.

line[‘second’] = new_value

Values are automatically converted to integer or float types as
appropriate.

Subsets of data can be created using the ‘subset’ method.

Line numbers can also be set by the creating subprogram, and
queried via the ‘lineno’ method.

It is possible to use a different field delimiter than tabs, by
explicitly specifying the value of the ‘delimiter’ argument,
e.g. for a comma-delimited line:

line = TabDataLine(“1,2,3”,delimiter=’,’)

Check if a line is empty:

if not line: print(“Blank line”)

	
append(*values)

	Append values to the data line

Should only be used when creating new data lines.

	
appendColumn(key, value)

	Append keyed values to the data line

This adds a new value along with a header name (i.e. key)

	
convert_to_str(value)

	Convert value to string

	
convert_to_type(value)

	Internal: convert a value to the correct type

Used to coerce input values into integers or floats
if appropriate before storage in the TabDataLine
object.

	
convert_to_type_pep515(value)

	Internal: convert a value to the correct type

Used to coerce input values into integers or floats
if appropriate before storage in the TabDataLine
object.

The conversion honors PEP 515 so numerical values
can also contain underscore characters.

	
delimiter(new_delimiter=None)

	Set and get the delimiter for the line

If ‘new_delimiter’ is not None then the field delimiter
for the line will be updated to the supplied value. This
affects how lines are represented via the __repr__
built-in.

Returns the current value of the delimiter.

	
lineno()

	Return the line number associated with the line

NB The line number is set by the class or function which
created the TabDataLine object, it is not guaranteed by
the TabDataLine class itself.

	
subset(*keys)

	Return a subset of data items

This method creates a new TabDataLine instance with a
subset of data specified by the ‘keys’ argument, e.g.

new_line = line.subset(2,1)

returns an instance with only the 2nd and 3rd data values
in reverse order.

To access the items in a subset using index notation,
use the same keys as those specified when the subset was
created. For example, for

s = line.subset(“two”,”nine”)

use s[“two”] and s[“nine”] to access the data; while for

s = line.subset(2,9)

use s[2] and s[9].

	Parameters

	keys – one or more keys specifying columns to include in
the subset. Keys can be column indices, column names,
or a mixture, and the same column can be referenced
multiple times.

	
class bcftbx.TabFile.TabFile(filen=None, fp=None, column_names=None, skip_first_line=False, first_line_is_header=False, tab_data_line=<class 'bcftbx.TabFile.TabDataLine'>, delimiter='t', convert=True, allow_underscores_in_numeric_literals=False, keep_commented_lines=False)

	Class to get data from a tab-delimited file

Loads data from the specified file into a data structure than can
then be queried on a per line and per item basis.

Data lines are represented by data line objects which must be
TabDataLine-like.

Example usage:

data = TabFile(myfile) # load initial data

print(‘%s’ % len(data)) # report number of lines of data

print(‘%s’ % data.header()) # report header (i.e. column names)

	for line in data:

	… # loop over lines of data

myline = data[0] # fetch first line of data

	
append(data=None, tabdata=None, tabdataline=None)

	Create and append a new data line

Creates a new data line object and appends it to the end of
the list of lines.

Optionally the ‘data’ or ‘tabdata’ arguments can specify
data items which will be used to populate the new line;
alternatively ‘tabdataline’ can provide a TabDataLine-based
object to be appended.

If none of these are specified then a default blank
TabDataLine-based object is created, appended and returned.

	Parameters

	
	data – (optional) a list of data items

	tabdata – (optional) a string of tab-delimited data items

	tabdataline – (optional) a TabDataLine-based object

	Returns

	Appended data line object.

	
appendColumn(name, fill_value='')

	Append a new (empty) column

	Parameters

	
	name – name for the new column

	fill_value – optional, value to insert into
all rows in the new column

	
computeColumn(column_name, compute_func)

	Compute and store values in a new column

For each line of data the computation function will be invoked
with the line as the sole argument, and the result will be stored in
a new column with the specified name.

	Parameters

	
	column_name – name or index of column to write transformation
result to

	compute_func – callable object that will be invoked to perform
the computation

	
filename()

	Return the file name associated with the TabFile

	
header()

	Return list of column names

If no column names were set then this will be an empty list.

	
indexByLineNumber(n)

	Return index of a data line given the file line number

Given the line number n for a line in the original file,
returns the index required to access the data for that
line in the TabFile object.

If no matching line is found then raises an IndexError.

	
insert(i, data=None, tabdata=None, tabdataline=None)

	Create and insert a new data line at a specified index

Creates a new data line object and inserts it into the list
of lines at the specified index position ‘i’ (nb NOT a line
number).

Optionally the ‘data’ or ‘tabdata’ arguments can specify
data items which will be used to populate the new line;
alternatively ‘tabdataline’ can provide a TabDataLine-based
object to be inserted.

	Parameters

	
	i – index position to insert the line at

	data – (optional) a list of data items

	tabdata – (optional) a string of tab-delimited data items

	tabdataline – (optional) a TabDataLine-based object

	Returns

	New inserted data line object.

	
lookup(key, value)

	Return lines where the key matches the specified value

	
nColumns()

	Return the number of columns in the file

If the file had a header then this will be the number of
header columns; otherwise it will be the number of columns
found in the first line of data

	
reorderColumns(new_columns)

	Rearrange the columns in the file

	Parameters

	new_columns – list of column names or indices in the
new order

	Returns

	New TabFile object

	
sort(sort_func, reverse=False)

	Sort data using arbitrary function

Performs an in-place sort based on the suppled sort_func.

sort_func should be a function object which takes a data line
object as input and returns a single numerical value; the data
lines will be sorted in ascending order of these values (or
descending order if reverse is set to True).

To sort on the value of a specific column use e.g.

>>> tabfile.sort(lambda line: line['col'])

	Parameters

	
	sort_func – function object taking a data line object as
input and returning a single numerical value

	reverse – (optional) Boolean, either False (default) to sort
in ascending order, or True to sort in descending order

	
transformColumn(column_name, transform_func)

	Apply arbitrary function to a column

For each line of data the transformation function will be invoked
with the value of the named column, with the result being written
back to that column (overwriting the existing value).

	Parameters

	
	column_name – name of column to write transformation result to

	transform_func – callable object that will be invoked to perform
the transformation

	
transpose()

	Transpose the contents of the file

	Returns

	New TabFile object

	
write(filen=None, fp=None, include_header=False, no_hash=False, delimiter=None)

	Write the TabFile data to an output file

One of either the ‘filen’ or ‘fp’ arguments must be given,
specifying the file name or stream to write the TabFile data to.

	Parameters

	
	filen – (optional) name of file to write to; ignored if fp is
also specified

	fp – (optional) a file-like object opened for writing; used in
preference to filen if set to a non-null value
Note that the calling program must close the stream in
these cases.

	include_header – (optional) if set to True, the first
line will be a ‘header’ line

	no_hash – (optional) if set to True and include_header is
also True then don’t put a hash character ‘#’ at the
start of the header line in the output file.

	delimiter – (optional) delimiter to use when writing data values
to file (defaults to the delimiter specified on input)

	
class bcftbx.TabFile.TabFileIterator(filen=None, fp=None, column_names=None)

	Iterate through lines in a tab-delimited file

Class to loop over all lines in a TSV file, returning a TabDataLine
object for each record.

bcftbx.simple_xls and bcftbx.Spreadsheet

simple_xls

Simple spreadsheet module intended to provide a nicer programmatic interface
to Excel spreadsheet generation.

It is currently built on top of SpreadSheet.py, which itself uses the xlwt,
xlrd and xlutils modules. In future the relevant parts may be rewritten to
remove the dependence on Spreadsheet.py and call the appropriate xl* classes
and functions directly.

Example usage

Start by making a workbook, represented by an XLSWorkBook object:

>>> wb = XLSWorkBook("Test")

Then add worksheets to this:

>>> wb.add_work_sheet('test')
>>> wb.add_work_sheet('data',"My Data")

Worksheets have an id and an optional title. Ids must be unique and can
be used to fetch the XLSWorkSheet object that represent the worksheet:

>>> data = wb.worksheet['data']

Cells can be addressed directly using various notations:

>>> data['A1'] = "Column 1"
>>> data['A']['1'] = "Updated value"
>>> data['AZ']['3'] = "Another value"

The extent of the sheet is defined by the outermost populated rows and
columns

>>> data.last_column # outermost populated column
>>> data.last_row # outermost populated row

There are various other methods for returning the next row or column; see
the documentation for the XLSWorkSheet class.

Data can be added cell-wise (i.e. referencing individual cells as above),
row-wise, column-wise and block-wise.

Column-wise operations include inserting a column (shifting columns above
it along one to make space):

>>> data.insert_column('B',data=['hello','goodbye','whatev'])

Append a column (writing data to the first empty column at the end of
the sheet):

>>> data.append_column(data=['hello','goodbye','whatev'])

Write data to a column, overwriting any existing values:

>>> data.write_column(data=['hello','goodbye','whatev'])

Data can be specified as a list, text or as a single value which is
repeated for each cell (i.e. a “fill” value).

Similar row-wise operations also exist:

>>> data.insert_row(4,data=['Dozy','Beaky','Mick','Titch'])
>>> data.append_row(data=['Dozy','Beaky','Mick','Titch'])
>>> data.write_row(4,data=['Dozy','Beaky','Mick','Titch'])

Block-wise data can be added via a tab and newline-delimited string:

>>> data.insert_block_data("This is some
 random
 data")
>>> data.insert_block_data("This is some
 MORE random
 data",
... col='M',row=7)

Formulae can be specified by prefixing a ‘=’ symbol to the start of the
cell contents, e.g.:

>>> data['A3'] = '=A1+A2'

‘?’ and ‘#’ are special characters that can be used to indicate ‘current
row’ and ‘current column’ respectively, e.g.:

>>> data.fill_column('A','=B?+C?') # evaluates to 'B1+C1' (A1), 'B2+C2' (A2) etc

Styling and formatting information can be associated with a cell, either
when adding column, row or block data or by using the ‘set_style’ method.
In each case the styling information is passed via an XLSStyle object, e.g.

>>> data.set_style(XLSStyle(number_format=NumberFormats.PERCENTAGE),'A3')

The workbook can be saved to file:

>>> wb.save_as_xls('test.xls')

Alternatively the contents of a sheet (or a subset) can be rendered as text:

>>> data.render_as_text(include_columns_and_rows=True,
... eval_formulae=True,
... include_styles=True)
>>> data.render_as_text(start='B1',end='C6',include_columns_and_rows=True)

	
class bcftbx.simple_xls.CellIndex(idx)

	Convenience class for handling XLS-style cell indices

The CellIndex class provides a way of handling XLS-style
cell indices i.e. ‘A1’, ‘BZ112’ etc.

Given a putative cell index it extracts the column and
row which can then be accessed via the ‘column’ and
‘row’ attributes respectively.

The ‘is_full’ property reports whether the supplied
index is actually a ‘full’ index with both column and
row specifiers. If it is just a column or just a row
then only the appropriate ‘column’ or ‘row’ attributes
will be set.

	
is_full

	Return True if index has both column and row information

	
class bcftbx.simple_xls.ColumnRange(i, j=None, include_end=True, reverse=False)

	Iterator for a range of column indices

Range-style iterator for iterating over alphabetical column
indices, e.g.

>>> for c in ColumnRange('A','Z'):
... print(c)

	
next()

	Implements Iterator subclass ‘next’ method (Python 2 only)

	
class bcftbx.simple_xls.Limits

	Limits for XLS files (kept for backwards compatibility)

	
class bcftbx.simple_xls.XLSColumn(column_index, parent=None)

	Class representing a column in a XLSWorkSheet

An XLSColumn object provides access to data in a column
from a XLSWorkSheet object. Typically one can be returned
by doing something like:

>>> colA = ws['A']

and individual cell values then accessed by row number
alone, e.g.:

>>> value = colA['1']
>>> colA['2'] = "New value"

	
full_index(row)

	Return the full index for a cell in the column

Given a row index, returns the index of the cell
that this addresses within the column (e.g. if the
column is ‘A’ then row 2 addresses cell ‘A2’).

	
class bcftbx.simple_xls.XLSLimits

	Limits for XLS files

	
class bcftbx.simple_xls.XLSStyle(bold=False, color=None, bgcolor=None, wrap=False, border=None, number_format=None, font_size=None, centre=False, shrink_to_fit=False)

	Class representing a set of styling and formatting data

An XLSStyle object represents a collection of data used for
styling and formatting cell values on output to an Excel file.

The style attributes can be set on instantiation, or queried
and modified afterwards.

The attributes are:

bold: whether text is bold or not (boolean)
color: text color (name)
bgcolor: background color (name)
wrap: whether text in a cell should wrap (boolean)
border: style of cell border (thick, medium, thin etc)
number_format: a format code from the NumbersFormat class
font_size: font size in points (integer)
centre: whether text is centred in the cell (boolean)
shrink_to_fit: whether to shrink cell to fit the contents.

The ‘name’ property can be used to generate a name for the style
based on the attributes that have been set, for example:

>>> XLSStyle(bold=true).name
... '__bold__'

	
excel_number_format

	Return an Excel-style equivalent of the stored number format

Returns an Excel-style number format, or None if the format
isn’t set or is unrecognised.

	
name

	Return a name based on the attributes

	
style(item)

	Wrap ‘item’ with <style…>…</style> tags

Given a string (or object that can be rendered as a string)
return the string representation surrounded by <style…>
</style> tags, where the tag attributes describe the style
information stored in the XLSStyle object:

font=bold
color=(color)
bgcolor=(color)
wrap
border=(border)
number_format=(format)
font_size=(size)
centre
shrink_to_fit

	
class bcftbx.simple_xls.XLSWorkBook(title=None)

	Class for creating an Excel (xls) spreadsheet

An XLSWorkBook instance provides an interface to creating an
Excel spreadsheet.

It consists of a collection of XLSWorkSheet objects, each
of which represents a sheet in the workbook.

Sheets are created and appended using the add_work_sheet
method:

>>> xls = XLSWorkBook()
>>> sheet = xls('example')

Sheets are kept in the ‘worksheet’ property and can be acquired
by name:

>>> sheet = xls.worksheet['example']

Once the worksheet(s) have been populated an XLS file can be
created using the ‘save_as_xls’ method:

>>> xls.save_as_xls('example.xls')

	
add_work_sheet(name, title=None)

	Create and append a new worksheet

Creates a new XLSWorkSheet object and appends it
to the workbook.

	Parameters

	
	name – unique name for the worksheet

	title – optional, title for the worksheet - defaults to
the name.

	Returns

	New XLSWorkSheet object.

	
save_as_xls(filen)

	Output the workbook contents to an Excel-format file

	Parameters

	filen – name of the file to write the workbook to.

	
save_as_xlsx(filen)

	Output the workbook contents to an XLSX-format file

	Parameters

	filen – name of the file to write the workbook to.

	
class bcftbx.simple_xls.XLSWorkSheet(title)

	Class for creating sheets within an XLS workbook.

XLSWorkSheet objects represent a sheet within an Excel
workbook.

Cells are addressed within the sheet using Excel notation
i.e. <column><row> (columns start at index ‘A’ and rows at
‘1’, examples are ‘A1’ or ‘D19’):

>>> ws = XLSWorkSheet('example')
>>> ws['A1'] = 'some data'
>>> value = ws['A1']

If there is no data stored for the cell then ‘None’ is
returned. Any cell can addressed without errors.

Data can also be added column-wise, row-wise or as a
“block” of tab- and new-line delimited data:

>>> ws.insert_column_data('B',[1,2,3])
>>> ws.insert_row_data(4,['x','y','z'])
>>> ws.insert_block_data("This\tis\nthe\tdata")

A column can be “filled” with a single repeating value:

>>> ws.fill_column('D','single value')

The extent of the sheet can be determined from the
‘last_column’ and last_row’ properties; the ‘next_column’
and ‘next_row’ properties report the next empty column
and row respectively.

Cells can contain Excel-style formula by adding an
equals sign to the start of the value. Typically formulae
reference other cells and perform mathematical operations
on them, e.g.:

>>> ws['E11'] = "=A1+A2"

Wildcard characters can be used which will be automatically
translated into the cell column (‘#’) or row (‘?’), for
example:

>>> ws['F46'] = "=#47+#48"

will be transformed to “=F47+F48”.

Styles can be applied to cells, using either the ‘set_style’
method or via the ‘style’ argument of some methods, to
associate an XLSStyle object. Associated XLSStyle objects
can be retrieved using the ‘get_style’ method.

The value of an individual cell can be ‘rendered’ for
output using the ‘render_cell’ method:

>>> print(ws.render_cell('F46'))

All or part of the sheet can be rendered as a tab- and
newline-delimited string by using the ‘render_as_text’
method:

>>> print(ws.render_as_text())

	
append_column(data=None, text=None, fill=None, from_row=None, style=None)

	Create a new column at the end of the sheet

Appends a new column at the end of the worksheet i.e. in the
first available empty column.

By default the appended column is empty, however data can
be specified to populate the column.

	Parameters

	
	data – optional, list of data items to populate the
inserted column

	text – optional, tab-delimited string of text to be used
to populate the inserted column

	fill – optional, single data item to be repeated to fill
the inserted column

	from_row – optional, if specified then inserted column is
populated from that row onwards

	style – optional, an XLSStyle object to associate with the
data being inserted

	Returns

	The index of the appended column.

	
append_row(data=None, text=None, fill=None, from_column=None, style=None)

	Create a new row at the end of the sheet

Appends a new row at the end of the worksheet i.e. in the
first available empty row.

By default the appended row is empty, however data can
be specified to populate the row.

	Parameters

	
	data – optional, list of data items to populate the
inserted row

	text – optional, newline-delimited string of text to be used
to populate the inserted row

	fill – optional, single data item to be repeated to fill
the inserted row

	from_row – optional, if specified then inserted row is
populated from that column onwards

	style – optional, an XLSStyle object to associate with the
data being inserted

	Returns

	The index of the inserted row.

	
column_is_empty(col)

	Determine whether a column is empty

Returns False if any cells in the column are populated,
otherwise returns True.

	
columnof(s, row=1)

	Return column index for cell which matches string

Return index of first column where the content matches
the specified string ‘s’.

	Parameters

	
	s – string to search for

	row – row to search in (defaults to 1)

	Returns

	Column index of first matching cell. Raises LookUpError
if no match is found.

	
fill_column(column, item, start=None, end=None, style=None)

	Fill a column with a single repeated data item

A single data item is inserted into all rows in the specified
column which have at least one data item already in any column
in the worksheet. A different range of rows can be specified
via the ‘start’ and ‘end’ arguments.

* THIS METHOD IS DEPRECATED *

Consider using insert_column, append_column or write_data.

	Parameters

	
	column – index of column to insert the item into (e.g. ‘A’,’MZ’)

	item – data item to be repeated

	start – (optional) first row to insert data into

	end – (optional) last row to insert data into

	style – (optional) XLSStyle object to be associated with each
cell that has data inserted into it

	
get_style(idx)

	Return the style information associated with a cell

Returns an XLSStyle object associated with the specific
cell.

If no style was previously associated then return a new
XLSStyle object.

	Parameters

	idx – cell index e.g ‘A1’

	Returns

	XLSStyle object.

	
insert_block_data(data, col=None, row=None, style=None)

	Insert data items from a block of text

Data items are supplied via a block of tab- and newline-delimited
text. Each tab-delimited item is inserted into the next column in
a row; newlines indicate that subsequent items are inserted into
the next row.

By default items are inserted starting from cell ‘A1’; a different
starting cell can be explicitly specified via the ‘col’ and ‘row’
arguments.

	Parameters

	
	data – block of tab- and newline-delimited data

	col – (optional) first column to insert data into

	row – (optional) first row to insert data into

	style – (optional) XLSStyle object to be associated with each
cell that has data inserted into it

	
insert_column(position, data=None, text=None, fill=None, from_row=None, style=None)

	Create a new column at the specified column position

Inserts a new column at the specified column position,
pushing up the column currently at that position plus all
higher positioned columns.

By default the inserted column is empty, however data can
be specified to populate the column.

	Parameters

	
	position – column index specifying position to insert the
column at

	data – optional, list of data items to populate the
inserted column

	text – optional, tab-delimited string of text to be used
to populate the inserted column

	fill – optional, single data item to be repeated to fill
the inserted column

	from_row – optional, if specified then inserted column is
populated from that row onwards

	style – optional, an XLSStyle object to associate with the
data being inserted

	Returns

	The index of the inserted column.

	
insert_column_data(col, data, start=None, style=None)

	Insert list of data into a column

Data items are supplied as a list, with each item in the list
being inserted into the next row in the column.

By default items are inserted starting from row 1, unless a
starting row is explicitly specified via the ‘start’ argument.

* THIS METHOD IS DEPRECATED *

Consider using insert_column, append_column or write_data.

	Parameters

	
	col – index of column to insert the data into (e.g. ‘A’,’MZ’)

	data – list of data items

	start – (optional) first row to insert data into

	style – (optional) XLSStyle object to be associated with each
cell that has data inserted into it

	
insert_row(position, data=None, text=None, fill=None, from_column=None, style=None)

	Create a new row at the specified row position

Inserts a new row at the specified row position,
pushing up the row currently at that position plus all
higher positioned row.

By default the inserted row is empty, however data can
be specified to populate the column.

	Parameters

	
	position – row index specifying position to insert the
row at

	data – optional, list of data items to populate the
inserted row

	text – optional, newline-delimited string of text to be used
to populate the inserted row

	fill – optional, single data item to be repeated to fill
the inserted row

	from_row – optional, if specified then inserted row is
populated from that column onwards

	style – optional, an XLSStyle object to associate with the
data being inserted

	Returns

	The index of the inserted row.

	
insert_row_data(row, data, start=None, style=None)

	Insert list of data into a row

Data items are supplied as a list, with each item in the list
being inserted into the next column in the row.

By default items are inserted starting from column ‘A’, unless a
starting column is explicitly specified via the ‘start’ argument.

* THIS METHOD IS DEPRECATED *

Consider using insert_row, append_row or write_row.

	Parameters

	
	row – index of row to insert the data into (e.g. 1, 112)

	data – list of data items

	start – (optional) first column to insert data into

	style – (optional) XLSStyle object to be associated with each
cell that has data inserted into it

	
last_column

	Return index of last column with data

	
last_row

	Return index of last row with data

	
next_column

	Index of first empty column after highest index with data

	
next_row

	Index of first empty row after highest index with data

	
render_as_text(include_columns_and_rows=False, include_styles=False, eval_formulae=False, apply_format=False, start=None, end=None)

	Text representation of all or part of the worksheet

All or part of the sheet can be rendered as a tab- and
newline-delimited string.

	Parameters

	
	include_columns_and_rows – (optional) if True then also output
a header row of column indices, and a column of row indices
(default is to not output columns and rows).

	include_styles – (optional) if True then also render the styling
information associated with the cell (default is not to apply
styling).

	apply_format – (optional) if True then format numbers according
to the formatting information associated with the cell
(default is not to apply formatting).

	eval_formulae – (optional) if True then if the cell contains
a formula, attempt to evaluate it and return the result.
Otherwise return the formula itself (this is the default)

	start – (optional) specify the top-lefthand most cell index to
start rendering from (default is ‘A1’).

	end – (optional) specify the bottom-righthand most cell index
to finish rendering at (default is the cell corresponding to
the highest column and row indices. Note that this cell may
be empty.)

	Returns

	String containing the rendered sheet or sheet subset, with items
within a row separated by tabs, and rows separated by newlines.

	
render_cell(idx, eval_formulae=False, apply_format=False)

	Text representation of value stored in a cell

Create a text representation of a cell’s contents. If the cell
contains a formula then ‘?’s will be replaced with the row index
and ‘#’s with the column index. Optionally the formula can also
be evaluated, and any style information associated with the cell
can also be rendered.

	Parameters

	
	idx – cell index e.g. ‘A1’

	eval_formulae – (optional) if True then if the cell contains
a formula, attempt to evaluate it and return the result.
Otherwise return the formula itself (this is the default)

	apply_format – (optional) if True then format numbers according
to the formatting information associated with the cell
(default is not to apply formatting).

	Returns

	String representing the cell contents.

	
row_is_empty(row)

	Determine whether a row is empty

Returns False if any cells in the row are populated,
otherwise returns True.

	
rowof(s, column='A')

	Return row index for cell which matches string

Return index of first row where the content matches
the specified string ‘s’.

	Parameters

	
	s – string to search for

	column – column to search in (defaults to ‘A’)

	Returns

	Row index of first matching cell. Raises LookUpError
if no match is found.

	
set_style(cell_style, start, end=None)

	Associate style information with one or more cells

Associates a specified XLSStyle object with a single
cell, or with a range of cells (if a second cell index
is supplied).

The style associated with a cell can be fetched using
the ‘get_style’ method.

	Parameters

	
	cell_style – XLSStyle object

	start – cell index e.g. ‘A1’

	end – (optional) second cell index; together with
‘start’ this defines a range of cells to associate
the style with.

	
write_column(col, data=None, text=None, fill=None, from_row=None, style=None)

	Write data to rows in a column

Data can be specified as a list, a newline-delimited string, or
as a single repeated data item.

	Parameters

	
	data – optional, list of data items to populate the
inserted column

	text – optional, newline-delimited string of text to be used
to populate the inserted column

	fill – optional, single data item to be repeated to fill
the inserted column

	from_row – optional, if specified then inserted column is
populated from that row onwards

	style – optional, an XLSStyle object to associate with the
data being inserted

	
write_row(row, data=None, text=None, fill=None, from_column=None, style=None)

	Write data to rows in a column

Data can be specified as a list, a tab-delimited string, or
as a single repeated data item.

	Parameters

	
	row – row index specifying which row

	data – optional, list of data items to populate the
inserted row

	text – optional, tab-delimited string of text to be used
to populate the inserted row

	from_column – optional, if specified then inserted row is
populated from that column onwards

	style – optional, an XLSStyle object to associate with the
data being inserted

	
class bcftbx.simple_xls.XLSXLimits

	Limits for XLSX files

	
bcftbx.simple_xls.cell(col, row)

	Return XLS cell index for column and row

E.g. cell(‘A’,3) returns ‘A3’

	
bcftbx.simple_xls.cmp_column_indices(x, y)

	Comparision function for column indices

x and y are XLS-style column indices e.g. ‘A’, ‘B’, ‘AA’ etc.

Returns -1 if x is a column index less than y, 1 if it is
greater than y, and 0 if it’s equal.

	
bcftbx.simple_xls.column_index_to_integer(col)

	Convert XLS-style column index into equivalent integer

Given a column index e.g. ‘A’, ‘BZ’ etc, converts it
to the integer equivalent using zero-based counting
system (so ‘A’ is equivalent to zero, ‘B’ to 1 etc).

	
bcftbx.simple_xls.column_integer_to_index(idx)

	Convert integer column index to XLS-style equivalent

Given an integer index, converts it to the XLS-style
equivalent e.g. ‘A’, ‘BZ’ etc, using a zero-based
counting system (so zero is equivalent to ‘A’, 1 to ‘B’
etc).

	
bcftbx.simple_xls.convert_to_number(s)

	Convert a number to float or int as appropriate

Raises ValueError if neither conversion is possible.

	
bcftbx.simple_xls.eval_formula(item, worksheet)

	Evaluate a formula using the contents of a worksheet

Given an item, attempts an Excel-style evaluation.

If the item doesn’t start with ‘=’ then it is returned as-is.
Otherwise the function attempts to evaluate the formula,
including looking up (and if necessary also evaluating) the
contents of any cells that are referenced.

Note

The implementation of the evaluation is very
simplistic and cannot handle complex formulae
or functions, it can only deal with basic
mathematical operations (i.e. +, -,
* and /)

	
bcftbx.simple_xls.format_value(value, number_format=None)

	Format a cell value based on the specified number format

	
bcftbx.simple_xls.incr_col(col, incr=1)

	Return column index incremented by specific number of positions

	Parameters

	
	col – index of column to be incremented

	incr – optional, number of cells to shift by. Can be negative
to go backwards. Defaults to 1 i.e. next column along.

	
bcftbx.simple_xls.is_float(s)

	Test if a number is a float

	
bcftbx.simple_xls.is_int(s)

	Test if a number is an integer

Spreadsheet

Provides classes for writing data to an Excel spreadsheet, using the 3rd party modules
xlrd, xlwt and xlutils.

The basic classes are ‘Workbook’ (representing an XLS spreadsheet) and ‘Worksheet’
(representing a sheet within a workbook). There is also a ‘Spreadsheet’ class which is
built on top of the other two classes and offers a simplified interface to writing
line-by-line XLS spreadsheets.

Simple usage examples

	Writing a new XLS spreadsheet using the Workbook class

>>> wb = Workbook()
>>> ws = wb.addSheet('test1')
>>> ws.addText("Hello Goodbye
Goodbye Hello")
>>> wb.save('test2.xls')

	Appending to an existing XLS spreadsheet using the Workbook class

>>> wb = Workbook('test2.xls')
>>> ws = wb.getSheet('test1')
>>> ws.addText("Some more data for you")
>>> ws = wb.addSheet('test2')
>>> ws.addText("<style font=bold bgcolor=gray25>Hahahah</style>")
>>> wb.save('test3.xls')

	Creating or appending to an XLS spreadsheet using the Spreadsheet class

>>> wb = Spreadsheet('test.xls','test')
>>> wb.addTitleRow(['File','Total reads','Unmapped reads'])
>>> wb.addEmptyRow()
>>> wb.addRow(['DR_1',875897,713425])
>>> wb.write()

Module constants

MAX_LEN_WORKSHEET_TITLE: maximum length allowed by xlwt for worksheet titles
MAX_LEN_WORKSHEET_CELL_VALUE: maximum number of characters allowed for cell value
MAX_NUMBER_ROWS_PER_WORKSHEET: maximum number of rows allowed per worksheet by xlwt

Dependencies

The Spreadsheet module depends on the xlwt, xlrd and xlutils libraries which
can be found at:

	http://pypi.python.org/pypi/xlwt/0.7.2

	http://pypi.python.org/pypi/xlrd/0.7.1

	http://pypi.python.org/pypi/xlutils/1.4.1

Note that xlutils also needs functools:
http://pypi.python.org/pypi/functools

but if you’re using Python<2.5 then you need a backported version of
functools, try:

https://github.com/dln/pycassa/blob/90736f8146c1cac8287f66e8c8b64cb80e011513/pycassa/py25_functools.py

	
class bcftbx.Spreadsheet.Spreadsheet(name, title)

	Class for creating and writing a spreadsheet.

This creates a very simple single-sheet workbook.

	
addEmptyRow(color=None)

	Add an empty row to the spreadsheet.

Inserts an empty row into the next position in the
spreadsheet.

	Parameters

	color – optional background color for the empty row

	Returns

	Integer index of (empty) row just written

	
addRow(data, set_widths=False, bold=False, wrap=False, bg_color='')

	Add a row of data to the spreadsheet.

	Parameters

	
	data – list of data items to be added.

	set_widths – (optional) Boolean; if True then set the column
width to the length of the cell contents for each cell
in the new row

	bold – (optional) use bold font for cells

	wrap – (optional) wrap the cell content

	bg_color – (optional) set the background color for the cell

	Returns

	Integer index of row just written

	
addTitleRow(headers)

	Add a title row to the spreadsheet.

The title row will have the font style set to bold for all
cells.

	Parameters

	headers – list of titles to be added.

	Returns

	Integer index of row just written

	
write()

	Write the spreadsheet to file.

	
class bcftbx.Spreadsheet.Styles

	Class for creating and caching EasyXfStyle objects.

XLS files have a limit of 4,000 styles, so cache and reuse EasyXfStyle
objects to avoid exceeding this limit.

	
getXfStyle(bold=False, wrap=False, color=None, bg_color=None, border_style=None, num_format_str=None, font_size=None, centre=False, shrink_to_fit=False)

	Return EasyXf object to apply styles to spreadsheet cells.

	Parameters

	
	bold – indicate whether font should be bold face

	wrap – indicate whether text should wrap in the cell

	color – set text colo(u)r

	bg_color – set colo(u)r for cell background.

	border_style – set line type for cell borders (thin, medium, thick, etc)

	font_size – font size (in points)

	centre – centre the cell content horizontally

	shrink_to_fit – shrink cell to fit contents

Note that colours must be a valid name as recognised by xlwt.

	
class bcftbx.Spreadsheet.Workbook(xls_name='')

	Class for writing data to an XLS spreadsheet.

A Workbook represents an XLS spreadsheet, which conists of sheets
(represented by Worksheet instances).

	
addSheet(title, xlrd_sheet=None, xlrd_index=None)

	Add a new sheet to the spreadsheet.

	Parameters

	
	title – title for the sheet

	xlrd_sheet – (optional) an xlrd sheet from an existing XLS
workbook.

	
getSheet(title)

	Retrieve a sheet from the spreadsheet.

	
save(xls_name)

	Finish adding data and write the spreadsheet to disk.

Note that for a spreadsheet based on an existing XLS file, this
doesn’t have to be the same name.

	Parameters

	xls_name – the file name to write the spreadsheet to. Note that if a
file already exists with this name then it will be overwritten.

	
class bcftbx.Spreadsheet.Worksheet(workbook, title, xlrd_index=None, xlrd_sheet=None)

	Class for writing to a sheet in an XLS spreadsheet.

A Worksheet object represents a sheet in an XLS spreadsheet.

Data can be inserted into the worksheet in a variety of ways:

	addTabData: a Python list of tab-delimited lines; each line forms a
line in the output XLS, with each field forming a column.

	addText: a string representing arbitrary text, with newlines delimiting
lines and tabs (if any) in each line delimiting fields.

Each can be called multiple times in any order on the same spreadsheet
before it is saved, and the data will be appended.

For new Worksheet objects (i.e. those which weren’t read from a
pre-existing XLS file), it is also possible to insert new columns:

	insertColumn: if a single value is specified then all columns are filled
with that value; alternatively a list of values can be supplied which
are written one-per-row.

Formulae can be specified using a variation on Excel’s ‘=’ notation, e.g.

=A1+B2

adds the values from cells A1 and B2 in the final spreadsheet.

Formulae are written directly as supplied unless they contain special
characters ‘?’ (indicates the current line number) or ‘#’ (indicates the
current column).

Using ‘?’ allows simple row-wise formulae to be added, e.g.

=A?+B?

will be converted to substitute the row index (e.g. ‘=A1+B1’ for row 1,
‘=A2+B2’ for row 2 etc).

Using ‘#’ allows simple column-wise formulae to be added, e.g.

=#1-#2

will be converted to substitue the column id (e.g. ‘=A1-A2’ for column A,
‘=B1-B2’ for column B etc).

Note that the substitution occurs when the spreadsheet is saved.

Individual items can have basic styles applied to them by wrapping them
in <style …>…</style> tags. Within the leading style tag the following
attributes can be specified:

font=bold (sets bold face)
color=<color> (sets the text colour)
bgcolor=<color> (sets the background colour)
border=<style> (sets the cell border style to ‘thin’, ‘medium’, ‘thick’ etc)
wrap (specifies that text should wrap)
number_format=<format_string> (specifies how to display numbers, see below)
font_height=<height> (sets font size in points)
centre (specifies that text should be centred)
shrink_to_fit (specifies that cells should shrink to fit their contents)

For example <style font=bold bgcolor=gray25>…</style>

Note that styles can also be applied to formulae.

The ‘number_format’ style attribute allows the calling program to specify how
numbers should be displayed, for example:

number_format=0.00 (displays values to 2 decimal places)
number_format=0.0% (displays values as percentages to 1 decimal place)
number_format=#,### (displays values with , as the delimiter for thousands)

The spreadsheet data is held internally as a list of rows, with each row
represented by a tab-delimited string.

	
addTabData(rows)

	Write a list of tab-delimited data rows to the sheet.

Given a list of rows with tab-separated data items,
append the data to the worksheet.

	Parameters

	data – Python list representing rows of tab-separated
data items

	
addText(text)

	Append and populate rows from text.

Given some arbitrary text as a string, the data it contains
will be appended to the worksheet using newlines to indicate
multiple rows and tabs to delimit data items.

This method is useful for turning tab-delimited data read
from a CSV-type file into a spreadsheet.

	Parameters

	text – a string representing the data to add: rows are
delimited by newlines, and items by tabs

	
column_id_from_index(i)

	Get XLS column id from index of column

cindex is the zero-based column index (an integer); this
method returns the matching XLS column identifier (i.e.
‘A’, ‘B’, ‘AA’, ‘BA’ etc).

	
freezePanes(row=None, column=None)

	Split panes and mark as frozen

‘row’ and ‘column’ are integer indices specifying the
cell which defines the pane to be marked as frozen

	
getColumnId(name)

	Lookup XLS column id from name of column.

If there is no data, or if the name isn’t in the header
row of the data, then an exception is raised.

Returns the column identifier (i.e. ‘A’, ‘B’ etc) for the
column with the matching name.

	
insertColumn(position, insert_items=None, title=None)

	Insert a new column into the spreadsheet.

This inserts a new column into each row of data, at the
specified positional index (starting from 0).

Note: at present columns can only be inserted into worksheets that have
been created from scratch via Worksheet class (i.e. cannot insert into
an existing worksheet read in from a file).

	Parameters

	
	position – positional index for the column to be inserted
at (0=A, 1=B etc)

	title – (optional) value to be written to the first row (i.e. a column
title)

	insert_items – value(s) to be inserted; either a single item, or a
list of items. Each item can be blank, a constant value, or a
formula.

	
save()

	Write the new data to the spreadsheet.

	
setCellValue(row, col, value)

	Set the value of a cell

Given row and column coordinates (using integer indices starting from zero
for both), replace the existing value with a new one.

The new value can include style information.

	Parameters

	
	row – integer row index (starting at zero)

	col – integer column index (starting at zero, i.e. 0=A, 1=B etc)

	value – new value to be written into the cell

bcftbx.cmdparse

Provides a CommandParser class for handling command lines of the form:

PROG COMMAND OPTION ARGS

where different sets of options can be defined based on the initial
command.

The CommandParser can support arbitrary ‘subparser backends’ which are
created to parse the ARGS list for each defined COMMAND. The default
subparser is the ‘argparse.ArgumentParser’ class, but this can be swapped
for arbitrary subparser when the CommandParser is created.

In addition to the core CommandParser class, there are a number of
supporting functions that can be used with any argparse-based parser
instance, to add the following ‘standard’ options:

	–nprocessors

	–runner

	–no-save

	–dry-run

	–debug

	
class bcftbx.cmdparse.CommandParser(description=None, version=None, subparser=None)

	Class defining multiple command line parsers

This parser can process command lines of the form

PROG CMD OPTIONS ARGS

where different sets of options can be defined based on the major
command (‘CMD’) supplied at the start of the line.

Usage:

Create a simple CommandParser which uses argparse.ArgumentParser as
the default subparser backend using:

>>> p = CommandParser()

Alternatively, specify argparse.ArgumentParser as the subparser
using:

>>> p = CommandParser(subparser=argparser.ArgumentParser)

Add a ‘setup’ command:

>>> p.add_command('setup',usage='%prog setup OPTIONS ARGS')

Add options to the ‘setup’ command using the appropriate methods
of the subparser (e.g. ‘add_argument’ for an
ArgumentParser instance).

For example:

>>> p.parser_for('info').add_argument('-f',...)

To process a command line, use the ‘parse_args’ method, for
example for an OptionParser-based subparser:

>>> cmd,options,args = p.parse_args()

Note that the exact form of the returned values depends on
on the subparser instance; it will be the same as that
returned by the ‘parse_args’ method of the subparser.

	
add_command(cmd, help=None, **args)

	Add a major command to the CommandParser

Adds a command, and creates and returns an initial
subparser instance for it.

	Parameters

	
	cmd – the command to be added

	help – (optional) help text for the command

Other arguments are passed to the subparser instance
when it is created i.e. ‘usage’, ‘version’,
‘description’.

If ‘version’ isn’t specified then the version
supplied to the CommandParser object will be used.

	Returns

	Subparser instance object for the command.

	
error(message)

	Exit with error message

	
handle_generic_commands(cmd)

	Process ‘generic’ commands e.g. ‘help’

	
list_commands()

	Return the list of commands

	
parse_args(argv=None)

	Process a command line

Parses a command line (either those supplied to the calling
subprogram e.g. via the Python interpreter, or as a list).

Once the command is identified from the first argument, the
remainder of the arguments are passed to the ‘parse_args’
method of the appropriate subparser for that command.

This method returns a tuple, with the first value being the
command, and the rest of the values being those returned
from the ‘parse_args’ method of the subparser.

	Parameters

	argv – (optional) a list consisting of a command line.
If not supplied then defaults to sys.argv[1:].

	Returns

	A tuple of (cmd,…), where ‘cmd’ is the command, and ‘…’
represents the values returned from the ‘parse_args’ method
of the subparser. For example, using the default OptionParser
backend returns (cmd,options,arguments), where ‘options’ and
‘arguments’ are the options and arguments as returned by
OptionParser.parse_args; using ArgumentParser as a backend
returns (cmd,arguments).

	
parser_for(cmd)

	Return OptionParser for specified command

	Returns

	The OptionParser object for the specified command.

	
print_available_commands()

	Pretty-print available commands

Returns a ‘pretty-printed’ string for all options and commands,
with standard whitespace formatting.

	
print_command(cmd, message=None)

	Print a line for a single command

Returns a ‘pretty-printed’ line for the specified command
and text, with standard whitespace formatting.

	
bcftbx.cmdparse.add_arg(p, *args, **kwds)

	Add an argument or option to a parser

Given an arbitrary parser instance, adds a new
option or argument using the appropriate method
call and passing the supplied arguments and
keywords.

For example, if the parser is an instance of
argparse.ArgumentParser, then the ‘add_argument’
method will be invoked to add a new argument to
the parser.

	Parameters

	
	p (Object) – parser instance

	args (List) – list of argument values to pass
directly to the argument-addition method

	kwds (mapping) – keyword-value mapping to pass
directly to the argument-addition method

	
bcftbx.cmdparse.add_debug_option(parser)

	Add a ‘–debug’ option to a parser

Given a parser instance ‘parser’ (either OptionParser or
ArgumentParser), add a ‘–debug’ option.

The value of this option can be accessed via the ‘debug’
attribute of the parser options.

Returns the input parser object.

	
bcftbx.cmdparse.add_dry_run_option(parser)

	Add a ‘–dry-run’ option to a parser

Given a parser instance ‘parser’ (either OptionParser or
ArgumentParser), add a ‘–dry-run’ option.

The value of this option can be accessed via the ‘dry_run’
attribute of the parser options.

Returns the input parser object.

	
bcftbx.cmdparse.add_no_save_option(parser)

	Add a ‘–no-save’ option to a parser

Given a parser instance ‘parser’ (either OptionParser or
ArgumentParser), add a ‘–no-save’ option.

The value of this option can be accessed via the ‘no_save’
attribute of the parser options.

Returns the input parser object.

	
bcftbx.cmdparse.add_nprocessors_option(parser, default_nprocessors, default_display=None)

	Add a ‘–nprocessors’ option to a parser

Given a parser instance ‘parser’ (either OptionParser or
ArgumentParser), add a ‘–nprocessors’ option.

The value of this option can be accessed via the ‘nprocessors’
attribute of the parser options.

If ‘default_display’ is not None then this value will be shown
in the help text, rather than the value supplied for the default.

Returns the input parser object.

	
bcftbx.cmdparse.add_runner_option(parser)

	Add a ‘–runner’ option to a parser

Given a parser instance ‘parser’ (either OptionParser or
ArgumentParser), add a ‘–runner’ option.

The value of this option can be accessed via the ‘runner’
attribute of the parser options (use the ‘fetch_runner’
function to return a JobRunner object from the supplied
value).

Returns the input parser object.

bcftbx.qc

bcftbx.qc.report

Utilities for generating reports for NGS QC pipeline runs.

	
class bcftbx.qc.report.IlluminaQCReporter(dirn, data_format=None, qc_dir='qc', regex_pattern=None, version=None)

	Class for reporting QC run on Illumina data

IlluminaQCReporter assembles the data associated with a QC run for a set
of Illumina data and generates a HTML document which summarises the
results for quick review.

	
report()

	Write the HTML report

Writes a HTML document ‘qc_report.html’ to the top-level analysis directory.

	
zip()

	Make a zip file containing the report and the images

Generate the ‘qc_report.html’ file and make a zip file
‘qc_report.<run>.<name>.zip’ which contains the report plus the
associated image files, which can be unpacked elsewhere
for viewing.

	Returns

	Name of the zip file with the report.

	
class bcftbx.qc.report.IlluminaQCSample(name, qc_dir, fastq=None)

	Class for holding QC data for an Illumina sample

An Illumina QC run typically consists of contamination screens
and output from FastQC.

	
is_empty

	Return True if the sample has no reads, False otherwise

	
report(html)

	Write HTML report for this sample

	
verify()

	Check QC products for this sample

Checks that fastq_screens and FastQC files were found. Returns True if the
QC products are present and False otherwise.

	
class bcftbx.qc.report.QCReporter(dirn, data_format=None, qc_dir='qc', regex_pattern=None, version=None)

	Base class for reporting QC runs

This is a general class for reporting runs of the FLS NGS QC
pipelines. QC reporters specific to particular pipelines should be
subclassed from QCReporter and need to implement the ‘report’
method to generate the HTML output.

	
addSample(sample)

	Add a QCSample class or subclass to the sample list

	
data_format

	Return the format for the primary data files

	
dirn

	Return top-level directory containing data

	
getPrimaryDataFiles()

	Return list of primary data file sets

Returns a list of primary data file names; use
the ‘primary_data_dir’ property to get the directory
where the files are actually located.

	
html

	Return HTMLPageWriter instance for the report

	
name

	Return name of experiment

	
primary_data_dir

	Return location of primary data files

	
qc_dir

	Return directory holding QC outputs

	
report()

	Generate a HTML report

This method must be implemented by the subclass.

	
report_base_name

	Return the base name for the report

	
report_name

	Return the full name for the report

	
run

	Return name of run

	
samples

	Return list of samples

	
verify()

	Check that the QC outputs are correct

Returns True if the QC appears to have run successfully, False if not.

	
zip()

	Make a zip file containing the report and the images

Generate the ‘qc_report.html’ file and make a zip file
‘qc_report.<run>.<name>.zip’ which contains the report plus the
associated image files etc. The archive can then be unpacked
elsewhere for viewing.

	Returns

	Name of the zip file with the report.

	
exception bcftbx.qc.report.QCReporterError

	Base class for errors with QCReporter-related code

	
class bcftbx.qc.report.QCSample(name, qc_dir)

	Base class for reporting QC for a single sample

This is a general class for reporting the QC outputs associated
with a single sample. It attempts to find all possible associated
QC products for the given sample name.

Specific pipelines should subclass QCSample and implement the
‘report’ method, which can call the ‘report_*’ methods to produce
HTML code specific to the pipeline in question.

	
addBoxplot(boxplot)

	Associate a boxplot with the sample

	Parameters

	boxplot – boxplot file name

	
addFastQC(fastqc_dir)

	Associate a FastQC output directory with the sample

	
addProgramInfo(programs)

	Collect program information from ‘programs’ file

	
addScreen(screen)

	Associate a fastq_screen with the sample

	Parameters

	screen – fastq_screen file name

	
boxplots()

	Return list of boxplots for a sample

	
fastqc

	Return name of FastQC run dir

	
programs

	Return data on programs

	
report()

	Generate a HTML report

This method must be implemented by the subclass.

	
report_boxplots(html, paired_end=False, inline_pngs=True)

	Write HTML code reporting the boxplots

	Parameters

	
	html – HTMLPageWriter instance to add the generated HTML to

	inline_pngs – if set True then embed the PNG images as base64
encoded data; otherwise link to the original image file

	
report_fastqc(html, inline_pngs=True)

	Write HTML code reporting the results from FastQC

	Parameters

	html – HTMLPageWriter instance to add the generated HTML to

	
report_programs(html)

	Write HTML code reporting the program information

	
report_screens(html, inline_pngs=True)

	Write HTML code reporting the fastq screens

	Parameters

	
	html – HTMLPageWriter instance to add the generated HTML to

	inline_pngs – if set True then embed the PNG images as base64
encoded data; otherwise link to the original image file

	
screens()

	Return list of screens for a sample

	
verify()

	Verify expected QC products for the sample

This method must be implemented by the subclass. It should return
True if the QC appears to have run successfully for the sample, False
if not.

	
zip_includes()

	Return list of files and directories to archive

	
class bcftbx.qc.report.SolidQCReporter(dirn, data_format=None, qc_dir='qc', regex_pattern=None, version=None)

	Class for reporting QC run on SOLiD data

SolidQCReporter assembles the data associated with a QC run for a set
of SOLiD data and generates a HTML document which summarises the
results for quick review.

	
report()

	Write the HTML report

Writes a HTML document ‘qc_report.html’ to the top-level analysis directory.

	
verify()

	Verify that SOLiD QC completed successfully for all samples

Returns True if the QC appears to have run successfully, False if not.

	
class bcftbx.qc.report.SolidQCSample(name, qc_dir, paired_end)

	Class for holding QC data for a SOLiD sample

A SOLiD QC run typically consists of filtered and unfiltered
boxplots, quality filtering stats, and contamination screens.

	
report(html)

	Write HTML report for this sample

	
verify()

	Check QC products for this sample

Checks that fastq_screens and boxplots were found. Returns True if the
QC products are present and False otherwise.

	
bcftbx.qc.report.add_dir_to_zip(z, dirn, zip_top_dir=None)

	Recursively add a directory and its contents to a zip archive

z is a zipfile.ZipFile object already opened for writing; this
function adds all files in directory dirn and its subdirectories
to z.

If zip_top_dir is not None then this is prepended to the file name
written to the zip archive.

	
bcftbx.qc.report.count_reads(csfasta_file)

	Count the number of reads in a CSFASTA file

Returns number of reads, or None

	
bcftbx.qc.report.is_boxplot(name, f)

	Return True if f is a qc_boxplot associated with sample

‘name’ can be a file name, or a file ‘root’ i.e. filename
with all trailing extensions removed.

	
bcftbx.qc.report.is_fastq_screen(name, f)

	Return True if f is a fastq_screen file associated with name

‘name’ can be a file name, or a file ‘root’ i.e. filename
with all trailing extensions removed.

	
bcftbx.qc.report.is_fastqc(name, f)

	Return True if f is a FastQC file associated with name

‘name’ can be a file name, or a file ‘root’ i.e. filename
with all trailing extensions removed.

	
bcftbx.qc.report.is_program_info(name, f)

	Return True if f is a ‘program info’ file associated with name

‘name’ can be a file name, or a file ‘root’ i.e. filename
with all trailing extensions removed.

	
bcftbx.qc.report.split_sample_name(name)

	Split name into leading part plus trailing number

Returns (start,number)

	
bcftbx.qc.report.strip_ngs_extensions(name)

	Remove fastq, fastq, csfasta or qual extensions from name

bcftbx.htmlpagewriter

htmlpagewriter

Provides HTMLPageWriter class which provides a simple programmatic
interface for generating HTML files.

	
class bcftbx.htmlpagewriter.HTMLPageWriter(title='')

	Generic HTML generation class

HTMLPageWriter provides basic operations for writing HTML
files.

Example usage:

>>> p = HTMLPageWriter("Example page")
>>> p.add("This is some text")
>>> p.write("example.html")

	
add(content)

	Add content to page body

Note that the supplied content is added to the HTML
document as-is; no escaping is performed so the content
can include arbitrary HTML tags. Note also that no
validation is performed.

	Parameters

	content – text to add to the HTML document body

	
addCSSRule(css_rule)

	Add CSS rule

Defines a CSS rule that will be inlined into a
“style” tag in the HTML head when the document is
written out.

The rule text is added as-is, e.g.:

>>> p = HTMLPageWriter("Example page")
>>> p.addCSSRule("body { color: blue; }")

No checking or validation is performed.

	Parameters

	css_rule – text defining CSS rule

	
addJavaScript(javascript)

	Add JavaScript

Defines a line of Javascript code that will be
inlined into a “script” tag in the HTML head when
the document is written out.

The code is added as-is, no checking or validation
is performed.

	Parameters

	javascript – Javascript code

	
write(filen=None, fp=None)

	Write the HTML document to file

Generates a HTML document based on the content, styles
etc that have been defined by calls to the object’s
methods.

Can supply either a filename or a file-like object
opened for writing.

	Parameters

	
	filen – name of the file to write the document to.

	fp – file-like object opened for writing; if this
is supplied then filen argument will be
ignored even if it is not None.

	
class bcftbx.htmlpagewriter.PNGBase64Encoder

	Utility class to encode PNG file into a base64 string

Base64 encoded PNGs can be embedded in HTML tags.

To use:

>>> p = PNGBase64Encoder.encodePNG("image.png")

	
encodePNG(pngfile)

	Return base64 string encoding a PNG file.

bcftbx.utils

utils

Utility classes and functions shared between BCF codes.

General utility classes:

AttributeDictionary
OrderedDictionary

File reading utilities:

getlines

File system wrappers and utilities:

PathInfo
mkdir
mkdirs
mklink
chmod
touch
format_file_size
commonprefix
is_gzipped_file
rootname
find_program
get_current_user
get_user_from_uid
get_uid_from_user
get_group_from_gid
get_gid_from_group
get_hostname
walk
list_dirs
strip_ext

Symbolic link handling:

Symlink
links

Sample name utilities:

extract_initials
extract_prefix
extract_index_as_string
extract_index
pretty_print_names
name_matches

File manipulations:

concatenate_fastq_files

Text manipulations:

split_into_lines

Command line parsing utilities:

parse_named_lanes
parse_lanes

General utility classes

	
class bcftbx.utils.AttributeDictionary(**args)

	Dictionary-like object with items accessible as attributes

AttributeDict provides a dictionary-like object where the value
of items can also be accessed as attributes of the object.

For example:

>>> d = AttributeDict()
>>> d['salutation'] = "hello"
>>> d.salutation
... "hello"

Attributes can only be assigned by using dictionary item assignment
notation i.e. d[‘key’] = value. d.key = value doesn’t work.

If the attribute doesn’t match a stored item then an
AttributeError exception is raised.

len(d) returns the number of stored items.

The AttributeDict behaves like a dictionary for iterations, for
example:

>>> for attr in d:
>>> print("%s = %s" % (attr,d[attr]))

	
class bcftbx.utils.OrderedDictionary

	Augumented dictionary which keeps keys in order

OrderedDictionary provides an augmented Python dictionary
class which keeps the dictionary keys in the order they are
added to the object.

Items are added, modified and removed as with a standard
dictionary e.g.:

>>> d[key] = value
>>> value = d[key]
>>> del(d[key])

The ‘keys()’ method returns the OrderedDictionary’s keys in
the correct order.

File handling utilities

	
bcftbx.utils.getlines(filen)

	Fetch lines from a file and return them one by one

This generator function tries to implement an efficient
method of reading lines sequentially from a text file, by
minimising the number of reads from the file and
performing the line splitting in memory. It attempts
to replicate the idiom:

>>> for line in io.open(filen):
>>> ...

using:

>>> for line in getlines(filen):
>>> ...

The file can be gzipped; this function should handle
this invisibly provided that the file extension is
‘.gz’.

	Parameters

	filen (str) – path of the file to read lines from

	Yields

	String –

	next line of text from the file, with any

	newline character removed.

File system wrappers and utilities

	
class bcftbx.utils.PathInfo(path, basedir=None)

	Collect and report information on a file

The PathInfo class provides an interface to getting general
information on a path, which may point to a file, directory, link
or non-existent location.

The properties provide information on whether the path is
readable (i.e. accessible) by the current user, whether it is
readable by members of the same group, who is the owner and
what group does it belong to, when was it last modified etc.

	
chown(user=None, group=None)

	Change associated owner and group

‘user’ and ‘group’ must be supplied as UID/GID
numbers (or None to leave the current values
unchanged).

* Note that chown will fail attempting to
change the owner if the current process is not
owned by root *

This is actually a wrapper to the os.lchmod
function, so it doesn’t follow symbolic links.

	
datetime

	Return last modification time as datetime object

	
deepest_accessible_parent

	Return longest accessible directory that leads to path

Tries to find the longest parent directory above path
which is accessible by the current user.

If it’s not possible to find a parent that is accessible
then raise an exception.

	
exists

	Return True if the path refers to an existing location

Note that this is a wrapper to os.path.lexists so it reports
the existence of symbolic links rather than their targets.

	
gid

	Return associated GID (group ID)

Attempts to return the GID (group ID) number associated with
the path.

If the GID can’t be found then returns None.

	
group

	Return associated group name

Attempts to return the group name associated with the path.
If the name can’t be found then tries to return the GID
instead.

If neither pieces of information can be found then returns
None.

	
is_dir

	Return True if path refers to a directory

	
is_executable

	Return True if path refers to an executable file

	
is_file

	Return True if path refers to a file

	
is_group_readable

	Return True if the path exists and is group-readable

Paths may be reported as unreadable for various reasons,
e.g. the target doesn’t exist, or doesn’t have permission
for this user to read it, or if part of the path doesn’t
allow the user to read the file.

	
is_group_writable

	Return True if the path exists and is group-writable

Paths may be reported as unwritable for various reasons,
e.g. the target doesn’t exist, or doesn’t have permission
for this user to write to it, or if part of the path
doesn’t allow the user to read the file.

	
is_link

	Return True if path refers to a symbolic link

	
is_readable

	Return True if the path exists and is readable by the owner

Paths may be reported as unreadable for various reasons,
e.g. the target doesn’t exist, or doesn’t have permission
for this user to read it, or if part of the path doesn’t
allow the user to read the file.

	
mtime

	Return last modification timestamp for path

	
path

	Return the filesystem path

	
relpath(dirn)

	Return part of path relative to a directory

Wrapper for os.path.relpath(…).

	
resolve_link_via_parent

	If path or parent directory is a link then return actual path

Resolves and returns the ‘real’ path for a path where either
it or one of its parent directories is a symbolic link.

It will resolve multiple levels of symlinks to generate a path
that is free of links (nb it is possible that the resolved path
will not be an existing file or directory).

If there are no links in the directory tree then returns the
full path of the input.

	
uid

	Return associated UID (user ID)

Attempts to return the UID (user ID) number associated with
the path.

If the UID can’t be found then returns None.

	
user

	Return associated user name

Attempts to return the user name associated with the path.
If the name can’t be found then tries to return the UID
instead.

If neither pieces of information can be found then returns
None.

	
bcftbx.utils.mkdir(dirn, mode=None, recursive=False)

	Make a directory

	Parameters

	
	dirn – the path of the directory to be created

	mode – (optional) a mode specifier to be applied to the
new directory once it has been created e.g. 0775 or 0664

	recursive – (optional) if True then also create any
intermediate parent directories if they don’t already
exist

	
bcftbx.utils.mklink(target, link_name, relative=False)

	Make a symbolic link

	Parameters

	
	target – the file or directory to link to

	link_name – name of the link

	relative – if True then make a relative link (if possible);
otherwise link to the target as given (default)

	
bcftbx.utils.chmod(target, mode)

	Change mode of file or directory

This a wrapper for the os.chmod function, with the
addition that it doesn’t follow symbolic links.

For symbolic links it attempts to use the os.lchmod
function instead, as this operates on the link
itself and not the link target. If os.lchmod is not
available then links are ignored.

	Parameters

	
	target – file or directory to apply new mode to

	mode – a valid mode specifier e.g. 0775 or 0664

	
bcftbx.utils.touch(filename)

	Create new empty file, or update modification time if already exists

	Parameters

	filename – name of the file to create (can include leading path)

	
bcftbx.utils.format_file_size(fsize, units=None)

	Format a file size from bytes to human-readable form

Takes a file size in bytes and returns a human-readable
string, e.g. 4.0K, 186M, 1.5G.

Alternatively specify the required units via the ‘units’
arguments.

	Parameters

	
	fsize – size in bytes

	units – (optional) specify output in kb (‘K’), Mb (‘M’),
Gb (‘G’) or Tb (‘T’)

	Returns

	Human-readable version of file size.

	
bcftbx.utils.commonprefix(path1, path2)

	Determine common prefix path for path1 and path2

Use this in preference to os.path.commonprefix as the version
in os.path compares the two paths in a character-wise fashion
and so can give counter-intuitive matches; this version compares
path components which seems more sensible.

For example: for two paths /mnt/dir1/file and /mnt/dir2/file,
os.path.commonprefix will return /mnt/dir, whereas this function
will return /mnt.

	Parameters

	
	path1 – first path in comparison

	path2 – second path in comparison

	Returns

	Leading part of path which is common to both input paths.

	
bcftbx.utils.is_gzipped_file(filename)

	Check if a file has a .gz extension

	Parameters

	filename – name of the file to be tested (can include leading path)

	Returns

	True if filename has trailing .gz extension, False if not.

	
bcftbx.utils.rootname(name)

	Remove all extensions from name

	Parameters

	name – name of a file

	Returns

	Leading part of name up to first dot, i.e. name without any
trailing extensions.

	
bcftbx.utils.find_program(name)

	Find a program on the PATH

Search the current PATH for the specified program name and return
the full path, or None if not found.

	
bcftbx.utils.get_current_user()

	Return name of the current user

Looks up user name for the current user; returns
None if no matching name can be found.

	
bcftbx.utils.get_user_from_uid(uid)

	Return user name from UID

Looks up user name matching the supplied UID;
returns None if no matching name can be found.

	
bcftbx.utils.get_uid_from_user(user)

	Return UID from user name

Looks up UID matching the supplied user name;
returns None if no matching name can be found.

NB returned UID will be an integer.

	
bcftbx.utils.get_group_from_gid(gid)

	Return group name from GID

Looks up group name matching the supplied GID;
returns None if no matching name can be found.

	
bcftbx.utils.get_gid_from_group(group)

	Return GID from group name

Looks up GID matching the supplied group name;
returns None if no matching name can be found.

NB returned GID will be an integer.

	
bcftbx.utils.walk(dirn, include_dirs=True, pattern=None)

	Traverse the directory, subdirectories and files

Essentially this ‘walk’ function is a convenience wrapper
for the ‘os.walk’ function.

	Parameters

	
	dirn – top-level directory to start traversal from

	include_dirs – if True then yield directories as well
as files (default)

	pattern – if not None then specifies a regular expression
pattern which restricts the set of yielded files and
directories to a subset of those which match the
pattern

	
bcftbx.utils.list_dirs(parent, matches=None, startswith=None)

	Return list of subdirectories relative to ‘parent’

	Parameters

	
	parent – directory to list subdirectories of

	matches – if not None then only include subdirectories
that exactly match the supplied string

	startswith – if not None then then return subset of
subdirectories that start with the supplied string

	Returns

	List of subdirectories (relative to the parent dir).

	
bcftbx.utils.strip_ext(name, ext=None)

	Strip extension from file name

Given a file name or path, remove the extension (including the
dot) and return just the leading part of the name.

If an extension is explicitly specified then only remove the
extension if it matches.

Extension can be multipart e.g. ‘fastq.gz’ and can include a
leading dot e.g. ‘.gz’ or ‘gz’.

	Parameters

	name – name of a file

	Returns

	Leading part of name excluding specified extension, or first
extension i.e. to last dot.

Symbolic link handling

	
class bcftbx.utils.Symlink(path)

	Class for interrogating and modifying symbolic links

The Symlink class provides an interface for getting information
about a symbolic link.

To create a new Symlink instance do e.g.:

>>> l = Symlink('my_link.lnk')

Information about the link can be obtained via the various
properties:

	target = returns the link target

	is_absolute = reports if the target represents an absolute link

	is_broken = reports if the target doesn’t exist

There are also methods:

	resolve_target() = returns the normalise absolute path to the
target

	update_target() = updates the target to a new location

	
is_absolute

	Return True if the link target is an absolute link

	
is_broken

	Return True if the link target doesn’t exist i.e. link is broken

	
resolve_target()

	Return the normalised absolute path to the link target

	
target

	Return the target of the symlink

	
update_target(new_target)

	Replace the current link target with new_target

	Parameters

	new_target – path to replace the existing target with

	
bcftbx.utils.links(dirn)

	Traverse and return all symbolic links in under a directory

Given a starting directory, traverses the structure underneath
and yields the path for each symlink that is found.

	Parameters

	dirn – name of the top-level directory

	Returns

	Yields the name and full path for each symbolic link under ‘dirn’.

Sample name utilities

	
bcftbx.utils.extract_initials(name)

	Return leading initials from the library or sample name

Conventionaly the experimenter’s initials are the leading characters
of the name e.g. ‘DR’ for ‘DR1’, ‘EP’ for ‘EP_NCYC2669’, ‘CW’ for
‘CW_TI’ etc

	Parameters

	name – the name of a sample or library

	Returns

	The leading initials from the name.

	
bcftbx.utils.extract_prefix(name)

	Return the library or sample name prefix

	Parameters

	name – the name of a sample or library

	Returns

	The prefix consisting of the name with trailing numbers
removed, e.g. ‘LD_C’ for ‘LD_C1’

	
bcftbx.utils.extract_index_as_string(name)

	Return the library or sample name index as a string

	Parameters

	name – the name of a sample or library

	Returns

	The index, consisting of the trailing numbers from the name. It is
returned as a string to preserve leading zeroes, e.g. ‘1’ for
‘LD_C1’, ‘07’ for ‘DR07’ etc

	
bcftbx.utils.extract_index(name)

	Return the library or sample name index as an integer

	Parameters

	name – the name of a sample or library

	Returns

	The index as an integer, or None if the index cannot be converted to
integer format.

	
bcftbx.utils.pretty_print_names(name_list)

	Given a list of library or sample names, format for pretty printing.

	Parameters

	name_list – a list or tuple of library or sample names

	Returns

	String with a condensed description of the library
names, for example:

[‘DR1’, ‘DR2’, ‘DR3’, DR4’] -> ‘DR1-4’

	
bcftbx.utils.name_matches(name, pattern)

	Simple wildcard matching of project and sample names

Matching options are:

	exact match of a single name e.g. pattern ‘PJB’ matches ‘PJB’

	match start of a name using trailing ‘*’ e.g. pattern ‘PJ*’ matches
‘PJB’,’PJBriggs’ etc

	match using multiple patterns by separating with comma e.g. pattern
‘PJB,IJD’ matches ‘PJB’ or ‘IJD’. Subpatterns can include trailing
‘*’ character to match more names.

	Arguments

	name: text to match against pattern
pattern: simple ‘glob’-like pattern to match against

	Returns

	True if name matches pattern; False otherwise.

File manipulations

	
bcftbx.utils.concatenate_fastq_files(merged_fastq, fastq_files, bufsize=10240, overwrite=False, verbose=True)

	Create a single FASTQ file by concatenating one or more FASTQs

Given a list or tuple of FASTQ files (which can be compressed or
uncompressed or a combination), creates a single output FASTQ by
concatenating the contents.

	Parameters

	
	merged_fastq – name of output FASTQ file (mustn’t exist beforehand)

	fastq_files – list of FASTQ files to concatenate

	bufsize – (optional) size of buffer to use for copying data

	overwrite – (optional) if True then overwrite the output file if it
already exists (otherwise raise OSError); default is False

	verbose – (optional) if True then report operations to stdout,
otherwise operate quietly

Text manipulations

	
bcftbx.utils.split_into_lines(text, char_limit, delimiters=' \t\n', sympathetic=False)

	Split a string into multiple lines with maximum length

Splits a string into multiple lines on one or more delimiters
(defaults to the whitespace characters i.e. ‘ ‘,tab and newline),
such that each line is no longer than a specified length.

For example:

>>> split_into_lines("This is some text to split",10)
['This is','some text','to split']

If it’s not possible to split part of the text to a suitable
length then the line is split “unsympathetically” at the
line length, e.g.

>>> split_into_lines("This is supercalifragilicous text",10)
['This is','supercalif','ragilicous','text']

Set the ‘sympathetic’ flag to True to include a hyphen to
indicate that a word has been broken, e.g.

>>> split_into_lines("This is supercalifragilicous text",10,
... sympathetic=True)
['This is','supercali-','fragilico-','us text']

To use an alternative set of delimiter characters, set the
‘delimiters’ argument, e.g.

>>> split_into_lines("This: is some text",10,delimiters=':')
['This',' is some t','ext']

	Parameters

	
	text – string of text to be split into lines

	char_limit – maximum length for any given line

	delimiters – optional, specify a set of non-default
delimiter characters (defaults to whitespace)

	sympathetic – optional, if True then add hyphen to
indicate when a word has been broken

	Returns

	List of lines (i.e. strings).

bcftbx.ngsutils

ngsutils

Utility classes and functions specific to NGS applications.

Extracting reads from Fastq, cfasta and qual files:

	getreads: fetch reads one-by-one from Fastq, cfasta or qual file

	getreads_subset: fetch subset of reads specified by index

	getreads_regexp: fetch subset of reads matching regular expression

Extracting reads from Fastq, cfasta and qual files

	
bcftbx.ngsutils.getreads(filen)

	Return Fastq, csfasta or qual file reads one-by-one

This generator function iterates through a
sequence file (Fastq, csfasta or qual), and yields
read records one at a time. The read records are
returned as lists of lines.

The file can be gzipped; this function should handle
this invisibly provided that the file extension is
‘.gz’.

Lines starting with ‘#’ at the start of the file will
be treated as comments and ignored. Lines starting
with ‘#’ which occur in the body of the file (i.e.
after one or more lines of data) will be treated as
data.

Example usage:

>>> for r in getreads('illumina_R1.fq'):
>>> ... print(r)

	Parameters

	filen (str) – path of the file to fetch reads from

	Yields

	List –

	next read record from the file, as a list

	of lines.

	
bcftbx.ngsutils.getreads_subset(filen, indices)

	Fetch subset of reads from Fastq, csfasta or qual file

This generator function iterates through a
sequence file (Fastq, csfasta or qual), and yields a
subset of the read records which are referenced by the
supplied iterable indices.

The subset compromises of reads at the index positions
specified by the list of indices, with index 0 being the
first read in the file. Each read is returned as a list
of lines.

The file can be gzipped; this function should handle
this invisibly provided that the file extension is
‘.gz’.

Example usage (returns 1st, 3rd and 5th reads only):

>>> for r in getreads_subset('illumina_R1.fq',(0,2,4)):
>>> ... print(r)

	Parameters

	
	filen (str) – path of the file to fetch reads from

	indices (list) – list of read indices to return

	Yields

	List –

	next read record from the file, as a list

	of lines.

	
bcftbx.ngsutils.getreads_regex(filen, pattern)

	Fetch matching reads from Fastq, csfasta or qual file

This generator function iterates through a
sequence file (Fastq, csfasta or qual), and yields a
subset of read records. Each read is returned as a list
of lines.

The subset compromises of reads which match the
supplied regular expression.

The file can be gzipped; this function should handle
this invisibly provided that the file extension is
‘.gz’.

Example usage:

>>> for r in getreads_regexp('illumina_R1.fq',"2102:3130"):
>>> ... print(r)

	Parameters

	
	filen (str) – path of the file to fetch reads from

	pattern (list) – Python regular expression pattern

	Yields

	List –

	next read record from the file, as a list

	of lines.

Version History and Changes

Version 1.11.1 (2021-06-07)

	bcftbx/mock: fix mock HISEQ sample sheet data
https://github.com/fls-bioinformatics-core/genomics/pull/181

	illumina2cluster/verify_paired.py: fix broken --version
option
https://github.com/fls-bioinformatics-core/genomics/pull/180

Version 1.11.0 (2020-09-16)

	bcftbx/TabFile: ‘TabFile’ can keep commented lines from
the input file by specifying ‘keep_commented_lines=True’
https://github.com/fls-bioinformatics-core/genomics/pull/178

	bcftbx/TabFile: ‘TabFile.appendColumn’ method accepts new
‘fill_value’ argument, to provide a default value to put
into all rows in the new column
https://github.com/fls-bioinformatics-core/genomics/pull/176

	bcftbx/mock: mock ‘RunInfoXml’ updated to set the flowcell
ID more consistently with real-life examples
https://github.com/fls-bioinformatics-core/genomics/pull/177

Version 1.10.0 (2020-09-16)

	bcftbx/IlluminaData: relax the platform identification
mechanism in ‘IlluminaRun’; Illumina-like run directories
will be identified as generic ‘illumina’ platform if no
explicit platform is supplied or can be identified from the
instrument name. Exceptions are now only raised for run
directories which do not appear to come from an Illumina
sequencer
https://github.com/fls-bioinformatics-core/genomics/pull/174

	bcftbx/IlluminaData: add new properties to ‘IlluminaRun’
instances: ‘sample_sheet’ (‘SampleSheet’ instance) and
‘runinfo’ (‘IlluminaRunInfo’ instance)
https://github.com/fls-bioinformatics-core/genomics/pull/173

	bcftbx/IlluminaData: add new properties to ‘IlluminaRunInfo’
instances: ‘instrument’, ‘date’, ‘flowcell’ and ‘lane_count’
(extracted from ‘RunInfo.xml’ file)
https://github.com/fls-bioinformatics-core/genomics/pull/172

	bcftbx/IlluminaData: ‘SampleSheet’ class ignores trailing
empty lines present in the input sample sheet file
https://github.com/fls-bioinformatics-core/genomics/pull/171

	bcftbx/JobRunner: ‘SimpleJobRunner’ reports status of
‘join_logs’ in ‘__repr__’; ‘fetch_runner’ handles ‘join_logs’
when setting up ‘SimpleJobRunner’
https://github.com/fls-bioinformatics-core/genomics/pull/170

	QC-pipeline: ‘fastq_screen.sh’ updated to handle FastqScreen
v0.13 and v0.14
https://github.com/fls-bioinformatics-core/genomics/pull/168

Version 1.9.1 (2020-06-09)

	bcftbx: fix unclosed files and related bugs that were
producing ‘ResourceWarnings’ under Python 3 tests
https://github.com/fls-bioinformatics-core/genomics/pull/163

	bcftbx/JobRunner: improvements to thread safety of the
‘SimpleJobRunner’ class when handling job completion and
cleanup
https://github.com/fls-bioinformatics-core/genomics/pull/166

Version 1.9.0 (2020-05-20)

	bcftbx/JobRunner: enable available number of CPUS (aka slots,
cores, threads) to be set and accessed within the
‘SimpleJobRunner’ and ‘GEJobRunner’ classes
https://github.com/fls-bioinformatics-core/genomics/pull/152

	bcftbx/mock: update ‘MockIlluminaData’ class to enable
forcing of creation of sample-level subdirectories when
generating mock data
https://github.com/fls-bioinformatics-core/genomics/pull/161

	bcftbx/IlluminaData: update ‘SampleSheetPredictor’ to
handle prediction of index reads, and to handle arbitrary
reads
https://github.com/fls-bioinformatics-core/genomics/pull/160

	bcftbx/htmlpagewriter: remove unused imports
https://github.com/fls-bioinformatics-core/genomics/pull/158

	Extend the list of supported Python versions to include
3.6 and 3.8; update the licence to Academic Free License
AFL 3.0
https://github.com/fls-bioinformatics-core/genomics/pull/157

	config/qc.setup.sample: updated to allow user-defined
environment variables to take precedence over values defined
in the setup file
https://github.com/fls-bioinformatics-core/genomics/pull/156

Version 1.8.3 (2020-02-27)

	bcftbx: remove internal version numbers from modules which
still had them
https://github.com/fls-bioinformatics-core/genomics/pull/155

	bcftbx/htmlpagewriter: update ‘PNGBase64Encoder’ for Python
3 compatibility
https://github.com/fls-bioinformatics-core/genomics/pull/154

	bcftbx/IlluminaData: ‘SampleSheetPredictor’ updated to
handle blank lane numbers in input samplesheet
https://github.com/fls-bioinformatics-core/genomics/pull/153

Version 1.8.2 (2020-02-17)

	bcftbx/IlluminaData: fix error in call to ‘digits’ method
in ‘split_run_name_full’
https://github.com/fls-bioinformatics-core/genomics/pull/149

	NGS-general/extract_reads.py: fix bug with handling gzipped
files under Python 2, and broken --version option under
Python 3
https://github.com/fls-bioinformatics-core/genomics/pull/150

	bcftbx/FASTQFile: fix bugs with reading Fastqs from disk
under Python 3
https://github.com/fls-bioinformatics-core/genomics/pull/151

Version 1.8.1 (2019-11-20)

	bcftbx/IlluminaData: fix to SampleSheet class to handle
cases when header lines have a ‘key’ without a comma
delimiter or value (thanks Ryan Golhar @golharam)
https://github.com/fls-bioinformatics-core/genomics/pull/148

Version 1.8.0 (2019-09-27)

	Updates for compatibility with Python 2.7 and 3.7

	https://github.com/fls-bioinformatics-core/genomics/pull/146

	https://github.com/fls-bioinformatics-core/genomics/pull/145

	https://github.com/fls-bioinformatics-core/genomics/pull/144

	https://github.com/fls-bioinformatics-core/genomics/pull/143

	https://github.com/fls-bioinformatics-core/genomics/pull/141

	https://github.com/fls-bioinformatics-core/genomics/pull/139

	https://github.com/fls-bioinformatics-core/genomics/pull/138

	https://github.com/fls-bioinformatics-core/genomics/pull/137

	https://github.com/fls-bioinformatics-core/genomics/pull/136

	https://github.com/fls-bioinformatics-core/genomics/pull/135

	https://github.com/fls-bioinformatics-core/genomics/pull/134

	https://github.com/fls-bioinformatics-core/genomics/pull/133

	https://github.com/fls-bioinformatics-core/genomics/pull/132

	https://github.com/fls-bioinformatics-core/genomics/pull/131

	https://github.com/fls-bioinformatics-core/genomics/pull/130

	https://github.com/fls-bioinformatics-core/genomics/pull/128

	https://github.com/fls-bioinformatics-core/genomics/pull/127

	https://github.com/fls-bioinformatics-core/genomics/pull/126

	https://github.com/fls-bioinformatics-core/genomics/pull/125

	https://github.com/fls-bioinformatics-core/genomics/pull/124

	https://github.com/fls-bioinformatics-core/genomics/pull/121

	https://github.com/fls-bioinformatics-core/genomics/pull/120

	https://github.com/fls-bioinformatics-core/genomics/pull/119

	https://github.com/fls-bioinformatics-core/genomics/pull/118

	https://github.com/fls-bioinformatics-core/genomics/pull/117

	https://github.com/fls-bioinformatics-core/genomics/pull/116

	https://github.com/fls-bioinformatics-core/genomics/pull/115

	https://github.com/fls-bioinformatics-core/genomics/pull/114

	https://github.com/fls-bioinformatics-core/genomics/pull/113

	https://github.com/fls-bioinformatics-core/genomics/pull/112

	https://github.com/fls-bioinformatics-core/genomics/pull/110

	https://github.com/fls-bioinformatics-core/genomics/pull/109

	https://github.com/fls-bioinformatics-core/genomics/pull/108

	https://github.com/fls-bioinformatics-core/genomics/pull/107

	https://github.com/fls-bioinformatics-core/genomics/pull/106

Version 1.7.0 (2019-07-04)

	bcftbx/cmdparse: updated to use argparse as the default
subparser
https://github.com/fls-bioinformatics-core/genomics/pull/99

	bcftbx: switch to using Python3-compatible print function
instead of print statement
https://github.com/fls-bioinformatics-core/genomics/pull/100

	bcftbx: fix Python syntax for raising and capturing
exceptions
https://github.com/fls-bioinformatics-core/genomics/pull/101

	bcftbx/JobRunner: remove the DRMAAJobRunner class
https://github.com/fls-bioinformatics-core/genomics/pull/102

	illumina2cluster/prep_sample_sheet.py: fix to bug with
conflicting -v options introduced in previous version
https://github.com/fls-bioinformatics-core/genomics/pull/105

Version 1.6.0 (2019-06-10)

	Command line utilities: updated to use argparse for
processing command line arguments
https://github.com/fls-bioinformatics-core/genomics/pull/96

	bcftbx: Python classes updated to ensure they all inherit
from object
https://github.com/fls-bioinformatics-core/genomics/pull/95

	bcftbx/mock: MockIlluminaData updated to handle arbitrary
reads (e.g. R1,`R2`,`I1`) when creating Fastqs
https://github.com/fls-bioinformatics-core/genomics/pull/97

Version 1.5.5 (2019-04-30)

	bcftbx/JobRunner: stability improvements and bug fixes to
GEJobRunner
https://github.com/fls-bioinformatics-core/genomics/pull/88
https://github.com/fls-bioinformatics-core/genomics/pull/90
https://github.com/fls-bioinformatics-core/genomics/pull/91

Version 1.5.4 (2019-02-21)

	bcftbx/IlluminaData: fix to SampleSheet class to handle
samplesheet files which contain [Manifests] section
https://github.com/fls-bioinformatics-core/genomics/pull/87

Version 1.5.3 (2019-01-31)

	bcftbx/JobRunner: fixes to GEJobRunner to deal with race
conditions on job finalization
https://github.com/fls-bioinformatics-core/genomics/pull/85

Version 1.5.2 (2018-09-28)

	QC-pipeline/fastq_strand.py:

	version 0.0.4: fixes cases when STAR fails
to map any reads
https://github.com/fls-bioinformatics-core/genomics/pull/81

	QC-pipeline/illumina_qc.sh:

	version 1.3.3: fixes bug setting permissions
when using –no-screens option
https://github.com/fls-bioinformatics-core/genomics/pull/82

	bcftbx/JobRunner: updates to GEJobRunner to
improve thread safety
https://github.com/fls-bioinformatics-core/genomics/pull/80

Version 1.5.1 (2018-09-13)

	bcftbx/IlluminaData:

	add iSeq to the list of known platforms

	enable handling of run names with four-digit
year in the datestamp
https://github.com/fls-bioinformatics-core/genomics/pull/79

	drop module-level version number

Version 1.5.0 (2018-08-22)

	bcftbx/JobRunner: substantial overhaul of
GEJobRunner to reduce footprint when
running on compute cluster e.g. removed calls
to qacct and reduced calls to qstat.

	https://github.com/fls-bioinformatics-core/genomics/pull/73

	https://github.com/fls-bioinformatics-core/genomics/pull/76

	NGS-general/split_fastq.py: new utility that
splits a Fastq file or R1/R2 pair based on the
lanes present in the file(s); can be used to
reverse the merging of Fastq files when
bcl2fastq is run with –no-lane-splitting

	https://github.com/fls-bioinformatics-core/genomics/pull/77

	QC-pipeline/fastq_strand.py:

	version 0.0.3

	removes existing output files on startup

	only write final outputs on success

	always remove temporary working directories
on completion (even if program failed)

	https://github.com/fls-bioinformatics-core/genomics/pull/72

	bcftbx/utils: reimplement AttributeDictionary
class so it can be pickled

	https://github.com/fls-bioinformatics-core/genomics/pull/78

Version 1.4.0 (2018-07-03)

	ChIP-seq/make_macs2_xls.py

	version 0.5.0: add ‘-b’/’–bed’ option to
output additional TSV file with { chrom,
abs_summit+/-100 } columns

	QC-pipeline/fastq_strand.py:

	version 0.0.2:

	can be run on a single Fastq (as well as pairs)

	changes to command line if specifying STAR
indexes directly: now needs ‘-g’/’–genome’
option for this

	QC-pipeline/illumina_qc.sh:

	version 1.3.2: new ‘–no-screens’ option
suppresses running of ‘fastq_screen’

Version 1.3.2 (2018-05-14)

	bcftbx/JobRunner: update GEJobRunner to sanitize
the supplied job name for use internally (before
submission to Grid Engine); the supplied name is
still used for communicating with external
processes

Version 1.3.1 (2018-04-19)

	bcftbx/JobRunner: fix GEJobRunner to wrap
script arguments in double quotes if they
contain whitespace

Version 1.3.0 (2018-03-29)

	QC-pipeline/fastq_strand.py: new utility program
which runs the STAR aligner to generate statistics
on the strandedness of Fastq R1/R2 file pairs

	bcftbx/IlluminaData: fix the fix_bases_mask
function to correctly handle empty barcode
sequences

Version 1.2.0 (2018-03-29)

	NGS-general/reorder_fasta.py: new utility program
to reorder chromosomes into karyotypical order in
a FASTA file

	bcftbx/IlluminaData: new function
split_run_name_full, which also extracts the
datestamp, instrument name, flow cell ID and prefix
from the run name

	bcftbx/IlluminaData: allow platform to be specified
explicitly when creating IlluminaRun objects
(for when platform cannot be extracted from the
data directory name)

Version 1.1.0 (2018-01-24)

	bcftbx/cmdparse: major update to enable
argparse to used as an alternative to optparse
when parsing subcommands (thanks to Mohit Agrawal
@mohit2agrawal)

	bcftbx/IlluminaData:

	Enable SampleSheet class to handle quoted header
values with commas in IEM-format sample sheets

	Update SampleSheetPredictor to handle missing
(blank) projects; fix bugs with the set method
and update documentation.

	bcftbx/JobRunner: trap for attempt to delete a
a missing/already deleted job in
SimpleJobRunner.list()

Version 1.0.4 (2017-10-05)

	bcftbx/utils:

	mkdir function supports new recursive option
(creates any intermediate directories that are
required)

	New mkdirs function creates intermediate
directories automatically (wraps mkdir)

	bcftbx/IlluminaData: samplesheet prediction and
validation allows invoking subprogram to force
insertion of ‘sample’ directory level even if
bcl2fastq wouldn’t normally produce one (needed
for 10xGenomics cellranger mkfastq output)

	bcftbx/ngsutils: new library module with file
reading and Fastq read extraction functions taken
from NGS-general/extract_reads.py utility

	NGS-general/extract_reads.py: read extraction
functions moved into new bcftbx.ngsutils module

Version 1.0.3 (2017-08-31)

	QC-pipeline/illumina_qc.sh:

	version 1.3.1

	reduce the default subset size for fastq_screen
to 10000

	can now handle Fastqs with .fq[.gz] extension

	new option –qc_dir (specify target QC output
directory

	checks that required programs are on the path at
start up

	QC-pipeline/fastq_screen.sh:

	reduce the default subset size to 10000

	can now handle Fastqs with .fq[.gz] extension

	new option –qc_dir (specify target QC output
directory

	bcftbx/Pipeline: GetFastq[Gz]Files now also
detects .fq[.gz] files

	bcftbx/qc/report: ‘strip_ngs_extensions’ now also
handles .fq[.gz] files

Version 1.0.2 (2017-05-12)

	bcftbx/FASTQFile: FastqIterator & FastqRead
updated to handle reads with zero-length sequences

	bcftbx/JobRunner: GEJobRunner skips qacct call
when job is terminated.

	bcftbx/IlluminaData: IlluminaFastq updated to
handle “index read” (i.e. I1/I2) Fastq file names

Version 1.0.1 (2017-03-31)

	bcftbx/htmlpagewriter: fix bug writing closing
</head> tag to HTML documents

	illumina2cluster/prep_sample_sheet.py: move the
lane/name parsing functions into utils library

	QC-pipeline/fastq_screen.sh: explicitly specify
fastq_screen –force option to overwrite
existing outputs

Version 1.0.0 (2017-02-23)

	bcftbx/FASTQFile:

	
	FastqRead now supports equality operator (==)

	to check if two reads are the same.

	nreads function updated to implicitly handle
gzipped FASTQs.

	bcftbx/IlluminaData: duplicated_names function
handles duplicates in IEM samplesheets which don’t
have an index column.

	QC-pipeline/fastq_screen.sh:

	updated to support fastq_screen versions 0.9.*

	trap for unsupported –color option for later
versions of fastq_screen (0.6.0+)

	trap for broken –subset option in versions
0.6.0-2 of fastq_screen

Version 0.99.15 (2016-10-07)

	bcftbx/IlluminaData: fix bug in SampleSheetPredictor
class which generated incorrect sample indexes for
bcl2fastq2 output when the sample sheet contained
lanes out of order (e.g. 2 appearing before 1).

	bcftbx/IlluminaData: new function
list_missing_fastqs (returns list of Fastqs
predicted from sample sheet which are missing from
the output of CASAVA or bcl2fastq); update
verify_run_against_sample_sheet to wrap this
(functionality should be unchanged).

Version 0.99.14 (2016-08-31)

	bcftbx/IlluminaData: new class SampleSheetPredictor
(and supporting classes) for improved prediction of
sample sheet outputs; new function cmp_sample_names
added (use for sorting sample names)

	illumina2cluster/prep_sample_sheet.py 0.4.0: update
prediction of outputs and add automatic pagination
when run in a terminal window

	QC-pipeline/fastq_screen.sh: updated to handle
fastq_screen 0.6.* and 0.7.0.

	bcftbx/JobRunner: update SimpleJobRunner and
GEJobRunner classes to capture exit code from the
underlying jobs (via exit_status property)

	bcftbx/Pipeline: update Job class to add new
update method (checks job status and updates
internals) and expose the exit code from the
underlying job (as returned via the job runner)
via exit_code property

	bcftbx/simple_xls: new save_as_xlsx method added
to XLSWorkBook class, to enable output to XLSX
format Excel files; new freeze_panes function
added to XLSWorkSheet class

	ChIP-seq/make_macs2_xls.py: default output is now
XLSX (use –format option to switch back to XLS)

Version 0.99.13 (2016-08-16)

	bcftbx/IlluminaData: updates to IlluminaData and
IlluminaFastq classes to handle ‘non-canonical’
FASTQ file names (i.e. names which don’t conform
to Illumina naming scheme)

	bcftbx/IlluminaData: new function
samplesheet_index_sequence (extracts barcodes
from lines from SampleSheet objects)

	Add HISeq4000 and MiniSeq to known platforms
in bcftbx/IlluminaData and bcftbx/platforms.

Version 0.99.12 (2016-06-30)

	bcftbx/IlluminaData: new ‘cycles’ property for
IlluminaRun class; update SampleSheet class to
handle missing ‘[Data]’ section in input file;
improvements to IlluminaData class for handling
bcl2fastq v2.* outputs.

Version 0.99.11 (2016-06-09)

	QC-pipeline/fastq_screen.sh: updated to handle output
from fastq_screen v0.5.2.

	QC-pipeline/prep_sample_sheet.py 0.3.1: new options
–set-adapter and –set-adapter-read2 allow updating
of adapter sequences specified in IEM sample sheets.

	bcftbx/IlluminaData: new sample_name_column
property added to the SampleSheet class.

Version 0.99.10 (2016-06-02)

	QC-pipeline/fastq_screen.sh & illumina_qc.sh: new
–subset option allows explicit specification of
subset size to be passed to fastq_screen (default
is still 1000000, use 0 to use all reads as per
fastq_screen 0.5.+)

Version 0.99.9 (2016-05-23)

	bcftbx/utils: fix pretty_print_names function, which
was broken if consective sample name prefixes differed
but their indices were consecutive.

Version 0.99.8 (2016-04-05)

	bcftbx/IlluminaData: fixes for IlluminaRun when the
target directory doesn’t exist; fixes for prediction
and verification of IlluminaData against sample
sheets for bcl2fastq v2 outputs using
–no-lane-splitting option.

	bcftbx/mock: new module with classes for creating
“mock” Illumina directories for testing (moved from
the unit tests).

Version 0.99.7 (2016-04-01)

	bcftbx/IlluminaData: fixes for “illegal” name and
ID detection and mitigation in IEM samplesheets;
fixes to handle of outputs from bcl2fastq v2 in
special cases when ‘Sample_ID’s and ‘Sample_Name’s
are not consistent.

Version 0.99.6 (2016-01-19)

	Updates for handling sequencing data from NextSeq
and bcl2fastq v2:

	bcftbx/IlluminaData: new generic SampleSheet
class handles both IEM- and CASAVA-style sample
sheets transparently; CasavaSampleSheet and
IEMSampleSheet classes reimplemented as wrappers
for SampleSheet.

	bcftbx/IlluminaData: IlluminaRun class updated
to handle NextSeq output.

	bcftbx/IlluminaData: IlluminaData, IlluminaProject,
IlluminaSample and IlluminaFastq classes updated
to handle outputs from bcl2fastq v2.

	prep_sample_sheet.py: handles both IEM and CASAVA
style sample sheets; use -f/–format option to
convert one to the other.

Version 0.99.5 (2016-01-04)

	extract_reads.py: updated to use a more efficient
method for reading data from input files.

	bcftbx/FASTQFile: FastqIterator updated to use
a more efficient method for reading data from
FASTQ files.

	bcftbx/qc/report: updated to handle special case
for Illumina data where the input FASTQ is empty
(i.e. has no reads) so there are no QC outputs.

Version 0.99.4 (2015-11-19)

	changed package name to ‘genomics-bcftbx’ in
setup.py.

Version 0.99.3 (2015-09-25)

	fetch_fasta.sh: fix bug when MD5 sum failed (e.g.
if file was missing)

	extract_reads.py: updated to handle gzipped input
files.

Version 0.99.2 (2015-08-05)

	Porting to Ubuntu: update Python scripts to use
‘#!/usr/bin/env python’ and shell scripts to use
‘#!/bin/bash’

	bcftbx/TabFile: add switch to TabFile class to
prevent type conversions when reading in data

	bcftbx/utils: new function ‘get_hostname’.

	NGS-general/split_fasta.py: fixes to handle
comments in sequence definition lines.

Version 0.99.1 (2015-04-16)

	First version which is installable via setup.py

	Significant rearrangement of various scripts and
programs

	First version of sphinx-based documentation added

	First version of test scripts for SOLiD and
Illumina QC scripts

Version 2015-02-12

	QC-pipeline/illumina_qc.sh

	Version 1.2.2

	Add –threads option (pass number of threads to
use to fastq_screen and fastqc)

	QC-pipeline/fastq_screen.sh

	Add –threads option (pass number of threads to
use to fastq_screen command)

Version 2014-12-10

	utils/cmpdirs.py

	Version 0.0.1

	Version 0.0.2

	Version 0.0.3

	New program to recursively compare the contents
of one directory against another.

Version 2014-12-04

	build-indexes/make_seq_alignments.sh

	New script to create sequence alignment (.nib)
files from a Fasta file.

Version 2014-12-03

	utils/symlink_checker.py

	version 1.1.1

	Add ‘genomics’ top-level directory to search path
for Python modules.

Version 2014-10-31

	QC-pipeline/illumina_qc.sh

	version 1.2.0

	Default behaviour is not not to decompress fastq
files, unless new ‘–ungzip-fastqs’ option is
specified (and existing option ‘–no-gzip-fastqs’ now
does nothing).

	version 1.2.1

	Added –version option.

Version 2014-10-14

	bcftbx/cmdparse.py

	version 1.0.0

	New module for creating ‘command parsers’, for
processing command lines of the form ‘PROG CMD OPTIONS
ARGS’.

	bcftbx/JobRunner.py

	version 1.1.0

	New function ‘fetch_runner’, returns appropriate job
runner instance matching text description (used for
specifying job runners on command line or in config
files).

Version 2014-10-10

	bcftbx/utils.py

	version 1.5.0

	New function ‘list_dirs’, gets subdirectories of
specified parent directory.

	bcftbx/Solid.py

	Updated ‘SolidRun’ class to handle cases where the
run definition file is missing.

Version 2014-10-09

	bcftbx/Md5sum.py

	version 1.1.0

	
	‘md5sum’ function updated to handle either file name,

	or a file-like object opened for reading.

	bcftbx/utils.py

	version 1.4.8

	New function ‘get_current_user’, gets name of
user running the program.

Version 2014-10-08

	bcftbx/utils.py

	version 1.4.7

	New property ‘resolve_link_via_parent’ for PathInfo
class, gets ‘real’ path from one that includes
symbolic links at any level.

Version 2014-09-01

	bcftbx/qc/report.py

	version 0.99.1

	relocated QC reporting classes and functions from the
qcreporter.py program into a new module in the bcftbx
package.

	bcftbx

	version 0.99.0

	add a single version for the whole package, accessible
using the ‘bcftbx.get_version()’ function.

	utils/md5checker.py

	version 0.3.2

	move unit tests into separate test module & remove –test
option.

Version 2014-08-21

	bcftbx

	Substantial update: Python library modules from ‘share’
relocated to ‘bcftbx’ and turned into a Python package.

	‘bcf_utils.py’ also renamed to ‘bcftbx/utils.py’.

	Python applications also updated to reflect the changes.

	microarray/best_exons.py

	version 1.2.1

	new program: averages data for ‘best’ exons for each gene
symbol in a file.

Version 2014-08-15

	share/JobRunner.py

	version 1.0.5

	new ‘ge_extract_args’ property for GEJobRunner.

Version 2014-08-11

	share/Md5sum.py

	version 1.0.1

	fixed compute_md5sums function to handle broken links

Version 2014-06-16

	QC-pipeline/illumina_qc.sh

	version 1.1.1

	Need to specify the –extract option to work with FastQC

0.11.2 (should be backwardsly compatible with 0.10.1).

	share/IlluminaData.py

	version 1.1.5

	‘get_casava_sample_sheet’ needs to handle leading & trailing
spaces in barcode sequences.

	share/bcf_utils.py

	version 1.4.5

	New function ‘walk’ traverses directory tree (wrapper for
os.walk function).

Version 2014-06-04

	share/IlluminaData.py

	version 1.1.4

	Fix_bases_mask updated to handle situation when a single index
sequence is supplied for dual index data.

	illumina2cluster/report_barcodes.py

	version 0.0.2

	Make reporting cutoff apply only to exact matches.

Version 2014-06-02

	illumina2cluster/prep_sample_sheet.py

	version 0.2.1

	New options –include-lanes and –truncate-barcodes allow
selection of subset of lanes, and barcode sequences to be
cut down.

Version 2014-05-22

	illumina2cluster/report_barcodes.py

	New program: examine barcode sequences from one or more
FASTQ files and report the most prevalent.

Version 2014-05-15

	utils/manage_seqs.py

	New program: utility to handle sets of named sequences;
intended to help manage custom ‘contaminants’ files for input
into the Brabaham ‘FastQC’ program.

Version 2014-05-07

	QC-pipeline/illumina_qc.sh

	version 1.1.0

	Optionally use a non-default list of contaminants for
FastQC (if specified in the qc.setup file)

	Create and set a local tmp directory for Java when
running FastQC.

	New –no-gunzip option suppresses creation of uncompressed
fastq files.

	share/bcf_utils.py

	version 1.4.4

	New functions for getting user and group names and ID numbers
from the system.

	New ‘PathInfo’ class for getting information about file system
paths.

	Moved symbolic link handling classes and functions in from
utils/symlink_checker.py program.

	‘format_file_sizes’ function updated to format to specific
units, and able to handle terabyte sizes.

	new function ‘find_program’.

	share/htmlpagewriter.py

	version 1.0.0

	New module: HTML page generation functionality relocated from
the QC-pipeline/qcreporter.py utility.

	share/IlluminaData.py

	version 1.1.3

	Move ‘describe_project’, ‘summarise_projects’ and
‘verify_run_against_sample_sheet’ functions from
illumina2cluster/analyse_illumina_run.py into this
module.

	share/JobRunner.py

	version 1.0.4

	fix broken ‘terminate’ method for SimpleJobRunner.

	move set/get of log directory into the BaseJobRunner
class.

	share/Md5sum.py

	Moved Md5Checker and Md5Reporter classes from
utils/md5checker.py program.

	share/Pipeline.py

	version 0.1.3

	add ‘runner’ property to Job class (to access associated
JobRunner instance).

	share/platforms.py

	added additional platforms and new function ‘list_platforms’

	utils/md5checker.py

	version 0.3.0

	substantial refactoring of code to add unit tests;
core functions and classes moved to the share/Md5sym.py
module.

	utils/symlink_checker.py

	version 1.1.0

	refactored to add unit tests and move core functions and
classes to share/bcf_utils.

	utils/uncompress_fastqz.sh

	New utility script for uncompressing fastq files.

Version 2014-04-17

	ChIP-seq/make_macs2_xls.py

	version 0.3.2

	Only sort output on fold enrichment

	Handle output from –broad option of MACS2

	Split data over multiple sheets if row limit is exceeded
(approx 64k records)

	Prevent reported command line being truncated if maximum
cell size is exceeded (approx 250 characters)

	Refactored internals to make more robust, added unit
tests and switched to use simple_xls module for
spreadsheet generation.

Version 2014-04-10

	RNA-seq/bowtie_mapping_stats.py

	version 1.1.5

	Updated to handle paired-end output from Bowtie2

Version 2014-04-09

	share/simple_xls.py

	version 0.0.7

	New methods for inserting and appending columns and rows,
which better mimic operations that would be used within a
graphical spreadsheet program.

	Significant updates to handling internal book-keeping to
improve performance.

Version 2014-04-04

	RNA-seq/bowtie_mapping_stats.py

	version 1.1.3

	Updated, now works with output from both Bowtie and Bowtie2

	share/simple_xls.py

	version 0.0.3

	New module intended to provide a nicer programmatic interface
to Excel spreadsheet generation (built on top of
Spreadsheet.py).

Version 2014-02-11

	share/JobRunner.py

	version 1.0.2

	SimpleJobRunner: ‘join_dirs’ option joins stderr to stdout

	GEJobRunner: jobs in ‘t’ (transferring) and ‘qw’
(queued-waiting) states counted as “running”

	GEJobRunner: arbitrary qsub arguments can be specified via
‘ge_extra_args’ option

	share/SpreadSheet.py

	version 0.1.8: add support for additional style options
(‘font_height’, ‘centre’, ‘shrink_to_fit’)

	share/bcf_utils.py

	version 1.0.3

	New function ‘find_program’ (locate file on PATH)

	New function ‘name_matches’ (simple pattern matching for project
and sample names, moved from analyse_illumina_data.py)

	New class ‘AttributeDictionary’

	New class ‘OrderedDictionary’

	New function ‘touch’ (creates new empty file)

	QC-pipeline/illumina_qc.sh

	Gunzip fastq.gz files via temporary name, to avoid partial
fastqs left behind if script terminates prematurely

	Write program version information to ‘qc’ subdirectory

	QC-pipeline/fastq_screen.sh

	Clean up existing files from previous incomplete run

	QC-pipeline/qcreporter.py

	version 0.1.1

	QCSample: ‘fastqc’ method made into a property

	share/Pipeline.py

	version 0.1.2

	Job class: add ‘wait’ method (waits for job to complete)

	PipelineRunner: ‘max_concurrent_jobs’ now applies only to
pipeline instance (i.e. not across all pipelines)

	PipelineRunner: implemented __del__ method to clean up
running pipeline instance (i.e. terminate running jobs)

	share/IlluminaData.py

	version 1.1.2

	New function ‘fix_bases_mask’ (adjust bases mask to match
actual barcode sequence lengths, for bclToFastq)

	ChIP-seq/make_macs_xls.sh

	Removed (redundant wrapper script to make_macs_xls.py)

	Unit tests

	Python unit tests moved into separate files in ‘share’

Version 2013-11-18

	build-indexes/fetch_fasta.sh

	Neurospora crassa (Ncrassa) updated to June 25th 2013
version.

	build-indexes/bowtie2_build_indexes.sh

	New: wrapper script to build bowtie2 indexes from a
fasta file.

	build-indexes/build_indexes.sh

	remove bfast indexes & add bowtie2.

Version 2013-11-15

	build-indexes/fetch_fasta.sh

	various builds renamed to longer & more accurate names:
* hg18 -> hg18_random_chrM
* hg19 -> hg19_GRCh37_random_chrM
* mm9 -> mm9_random_chrM_chrUn
* mm10 -> mm10_random_chrM_chrUn
* dm3 -> dm3_het_chrM_chrU
* ecoli -> e_coli
* dicty -> dictyostelium
* chlamyR -> Creinhardtii169

	updates to broken download URLs and checksums for PhiX,
sacBay, ws200 and ws201 genome builds.

	UniVec updated to build #7.1.

Version 2013-11-13

	build-indexes/fetch_fasta.sh

	updated to include sacCer1, sacCer3 and mm10 sequences.

	updated URL for C. reinhardtii.

	fixed minor bug in ‘fetch_url’ function.

Version 2013-09-11

	share/IlluminaData.py

	version 1.1.1: update get_casava_sample_sheet function to
handle “Experimental Manager”-type sample sheet files when
there are no barcode indexes.

	share/JobRunner.py

	version 1.0.1: fix and standardise handling of log and error
files for SimpleJobRunner and GEJobRunner classes; also added
minimal unit tests for these classes.

Version 2013-09-09

	share/FASTQFile.py

	version 0.3.0: attempt to improve performance of
SequenceIdentifier class (use string parsing instead of
regular expressions), and added new method ‘is_pair_of’
(can be used to check if another SequenceIdentifier forms
an R1/2 pair with this one). FastqRead class has new attribute
‘raw_seqid’ (returns original sequence id header supplied on
instantiation). New function ‘fastqs_are_pair’ checks that
corresponding read headers match between two FASTQ files.

	illumina2cluster/verify_paired.py

	version 1.0.0: new utility to check that two fastq files form
an R1/R2 pair.

	illumina2cluster/analyse_illumina_run.py

	version 0.1.11: updated implementation of –merge-fastqs option.

	illumina2cluster/check_paired_fastqs.py

	Removed: replaced by ‘verify_paired.py’.

	share/JobRunner.py

	version 1.0.1: updates to SimpleJobRunner and GEJobRunner classes
(store names associated with each job, and enable lookup via ‘name’
method; ensure stored log directory is an absolute path, and that
log and error file names can be retrieved correctly even if log dir
is subsequently changed).

Version 2013-09-06

	illumina2cluster/analyse_illumina_run.py

	version 0.1.9: improvements to reporting options when using
–summary and –list options.

	version 0.1.10: fix bug for runs that don’t have undetermined
indices.

	share/IlluminaData.py

	version 1.0.2: new method ‘fastq_subset’ for IlluminaSample
(returns subset of fastq files based on read number).

Version 2013-08-22

	share/bcf_utils.py:

	version 1.0.1: added new function ‘concatenate_fastq_files’
(concatenates a list of fastq files).

	version 1.0.2: updated ‘concatenate_fastq_files’ to improve
performance, and added tests.

	illumina2cluster/analyse_illumina_run.py

	version 0.1.8: new option –merge-fastqs, creates
concatenated fastq files for each sample.

	share/IlluminaData.py

	version 1.0.1: new property ‘full_name’ for IlluminaData,
(returns name suitable for analysis subdirectory); new
function ‘get_unique_fastq_names’ (generates mapping of
full Illumina-style fastq file names to shortest unique
version).

	illumina2cluster/build_illumina_analysis_dir.py

	version 1.0.1: move analysis directory creation code from
__main__ to new ‘create_analysis_dir’ function.

	version 1.0.2: remove redundant functions and switch to
versions in bcf_utils module.

Version 2013-08-21

	share/bcf_utils.py

	added baseline version number (1.0.0)

	illumina2cluster/build_illumina_analysis_dir.py

	added baseline version number (1.0.0)

Version 2013-08-20

	share/IlluminaData.py, JobRunner.py

	added version numbers (baseline 1.0.0)

	share/FASTQFile.py

	version 0.2.6: fix sequence length returned for
colorspace reads by FastqRead.seqlen

	version 0.2.5: added is_colorspace property to FastqRead

Version 2013-08-19

	illumina2cluster/prep_sample_sheet.py:

	version 0.2.0: –miseq option is deprecated as it’s no
longer necessary; sample sheet conversion is performed
automatically if required.

	illumina2cluster/IlluminaData.py:

	new function ‘get_casava_sample_sheet’ produces a
CasavaSampleSheet object from sample sheet CSV file
regardless of format. ‘convert_miseq_samplesheet_to_casava’
is deprecated as it is now just a wrapper to the more
genral function.

	share/FASTQFile.py

	version 0.2.4: added new properties to FastqRead: seqlen
(return sequence length), maxquality and minquality (max
and min encoded quality scores).

Version 2013-08-14

	share/FASTQFile.py

	version 0.2.3: new FastqAttributes class provides
access to “gross” attributes of FASTQ file (e.g. read
count, file size).

	share/JobRunner.py

	SimpleJobRunner and GEJobRunner classes allow destination
directory for log files to be specified explicitly, and
to be changed after instantiation via new ‘log_dir’ methods.

	GEJobRunner class has new ‘queue’ method allowing GE queue
to be changed after instantiation.

Version 2013-08-08

	illumina2cluster/analyse_illumina_run.py

	version 0.1.7: –summary option generates a one-line
description of projects and numbers of samples, suitable
for logging file entries.

Version 2013-08-05

	share/IlluminaData.py

	new classes IlluminaRun (extracts data from a directory
with the “raw” data from a sequencer run) and
IlluminRunInfo (extracts data from a RunInfo.xml file).

	share/platforms.py

	new Python module with utilities and data to identify NGS
sequencer platforms

	illumina2cluster/rsync_seq_data.py

	version 0.0.5: moved sequencer platform identification
code to share/platforms.py

	version 0.0.4: new options –no-log (write rsync ouput
directly to stdout) and –exclude (specify rsync filter
patterns to exclude files from transfer); explicitly
handle keyboard interrupt (i.e. ctrl-C) during rsync
operation.

Version 2013-08-01

	illumina2cluster/rsync_seq_data.py

	version 0.0.3: added new hiseq sequencer pattern to
PLATFORMS.

Version 2013-07-26

	illumina2cluster/rsync_seq_data.py

	version 0.0.2: add –mirror option, runs rsync with
–delete-after option to remove files from target directory
which are no longer present in the source.

	share/Spreadsheet.py

	version 0.1.7: fixed bug which meant formulae generation
failed for columns after ‘Z’ (i.e. ‘AA’, ‘AB’ etc).

Version 2013-07-19

	ChIP-seq/make_macs2_xls.py

	modified version of make_macs_xls.py to convert XLS output
files from MACS 2.0.10 (contributed by Ian Donaldson).

Version 2013-07-15

	illumina2cluster/rsync_seq_data.sh

	removed, replaced by rsync_seq_data.py.

	illumina2cluster/rsync_seq_data.py

	version 0.0.1: new program for rsync’ing sequencing data to
the appropriate location in the archive.

	utils/cluster_load.py

	new utility for reporting current Grid Engine utilisation by
wrapping the qstat program.

Version 2013-05-21

	illumina2cluster/auto_process_illumina.sh

	version 0.2.4: use multiple cores for bcl-to-fastq conversion.

	share/IlluminaData.py

	IlluminaSample class no longer raises an exception if no fastq
files are found, so IlluminaData objects can be populated from
an incomplete CASAVA run.

	illumina2cluster/build_illumina_analysis_dir.py

	automatically determine the set of shortest unique link names
to use for fastqs in each project.

Version 2013-05-20

	illumina2cluster/bclToFastq.sh

	New option –nprocessors allows specification of number of
cores to utilise when performing bcl to Fastq conversion.

Version 2013-05-17

	illumina2cluster/auto_process_illumina.sh

	version 0.2.3: fix bug with extracting the exit code from the
CASAVA/bcl2fastq step.

	share/FASTQFile.py

	version 0.2.1: implement more efficient line counting in nreads
function.

	illumina2cluster/analyse_illumina_run.py

	version 0.1.4: print results from –stats option in real time.

Version 2013-05-15

	illumina2cluster/auto_process_illumina.sh

	version 0.2.2: fix automatic determination of number of allowed
mismatches from the bases mask, to deal with e.g. ‘I6n’

Version 2013-05-02

	illumina2cluster/auto_process_illumina.sh

	version 0.2.1: write log files to “logs” subdirectory.

Version 2013-05-01

	illumina2cluster/auto_process_illumina.sh

	version 0.2.0: updated to work with multiple sample sheets.

Version 2013-04-25

	illumina2cluster/auto_process_illumina.sh

	version 0.1.0: significant updates to improve robustness, automatically
acquire mismatches and generate statistics report.

	ilumina2cluster/analyse_illumina_run.py

	version 0.1.2: also report file sizes as well as number of reads for
Fastq files using –stats option.

	share/bcf_utils.py

	new function “format_file_size” (converts file size supplied in bytes
into human-readable form e.g. 4.0K, 186.0M, 1.6G).

Version 2013-04-24

	share/bcf_utils.py

	fix bug in extract_index (failed for names ending with 0 e.g. ‘PJB0’).

Version 2013-04-23

	ilumina2cluster/analyse_illumina_run.py

	version 0.1.1: added –stats option (reports number of reads for each
FASTQ file generated by CASAVA’s bcl-to-FASTQ conversion).

	share/IlluminaData.py

	IlluminaData class has new property “undetermined” (allows access to
undetermined reads produced by demultiplexing).

	IlluminaProject.prettyPrintSamples() no longer includes info on paired
endedness of the data in the project.

Version 2013-04-22

	illumina2cluster/auto_process_illumina.sh

	new script to automate processing of sequencing data from Illumina
platforms.

Version 2013-04-16

	QC-pipeline/run_qc_pipeline.py

	fix bug with –queue option which meant queue specification was not
being honoured by the program.

Version 2013-04-11

	illumina2cluster/analyse_illumina_run.py

	version 0.1.0: new option –verify=SAMPLE_SHEET, verifies outputs
against those predicted by the named sample sheet.

	share/IlluminaData.py

	CasavaSampleSheet class:

	In “duplicated_names” method, now considers index and lane number
as well as SampleID and SampleProject in determining uniqueness.

	New method “predict_output”, returns a data structure describing
the expected project/sample/base file name hierarchy that would be
created using the sample sheet.

	Added ‘paired_end’ attribute to the IlluminaData and
IlluminaProject classes.

	illumina2cluster/prep_sample_sheet.py

	version 0.1.0: renamed from ‘update_sample_sheet.py’

	version 0.1.1: print predicted outputs for the input sample sheet.

	illumina2cluster/update_sample_sheet.py

	renamed to ‘prep_sample_sheet.py’

	illumina2cluster/demultiplex_undetermined_fastq.py

	new program: reassign reads with undetermined index sequences (i.e.
barcodes) from the FASTQ files in the ‘Undetermined_indices’
output directory from CASAVA.

Version 2013-04-10

	QC-pipeline/qcreporter.py

	version 0.1.0: added version number, and write this to report header
along with date and time of report generation.

	put the per-base quality boxplot from FastQC into the top-level
report.

	share/IlluminaData.py

	CasavaSampleSheet class: automatically remove double quotes from
around sample sheet values upon reading.

Version 2013-04-09

	share/FASTQFile.py

	version 0.2.0: added tests, new function “nreads” (counts reads in
FASTQ), and enabled FastqIterator to read data from an open
file-like object.

Version 2013-04-08

	share/IlluminaData.py

	updated IlluminaProject class: allow “Undetermined_indices” dir to
also be treated as a “project” within the class framework.

	illumina2cluster/analyse_illumina_run.py

	added –copy option, to copy specific FASTQ files to pwd.

Version 2013-04-05

	QC-pipeline/qcreporter.py

	new –regexp option allows selection of a subset of samples based on
regular expression pattern matching e.g. –regexp=SY[1-4]?_trim

Version 2013-03-13

	share/JobRunner.py

	update GEJobRunner and DRMAAJobRunner classes to deal with suspended
jobs.

	share/FASTQFile.py

	version 0.1.2: update FastqRead class to operate in a more efficient
“lazy” fashion.

Version 2013-03-07

	utils/fastq_sniffer.py

	new utility to identify likely FASTQ file format, quality encoding
and equivalent Galaxy data type.

Version 2013-02-19

	utils/extract_reads.py

	version 0.1.3: fix bug handling fastq files, was confused by quality
lines beginning with ‘#’ character.

Version 2013-02-18

	illumina2cluster/update_sample_sheet.py

	fix bug in –set-id option which misidentified lanes by their number.

Version 2013-01-29

	illumina2cluster/update_sample_sheet.py

	new option –miseq indicates input sample sheet is in MiSeq format,
(which will be converted to CASAVA format on output).

	share/IlluminaData.py

	update convert_miseq_samplesheet_to_casava to handle paired-end MiSeq
sample sheet.

	add new attribute “paired_end” to IlluminaSample objects, to indicate
whether the sample has paired end data.

	illumina2cluster/build_illumina_analysis_dir.py

	deal correctly with linking to paired end Fastq files.

Version 2013-01-25

	share/IlluminaData.py

	fix bug in convert_miseq_samplesheet_to_casava (always wrote empty
sample sheet).

Version 2013-01-24

	share/FASTQFile.py

	version 0.1.0: “casava” format now renamed to “illumina18”, for
consistency with FASTQ information at
http://en.wikipedia.org/wiki/FASTQ_format

	version 0.1.1: fixed failure to read Illumina 1.8+ files that are
missing barcode sequences in the identifier string.

Version 2013-01-23

	share/IlluminaData.py

	new class CasavaSampleSheet for handling sample sheet files for input
into CASAVA.

	new function convert_miseq_samplesheet_to_casava for creating CASAVA
style sample sheet from one from a MiSEQ sequencer.

	illumina2cluster/update_sample_sheet.py

	updated to use the CasavaSampleSheet class from IlluminaData.py.

Version 2013-01-22

	share/FASTQFile.py

	version 0.0.2: enable FastqIterator to operate on gzipped FASTQ input.

Version 2013-01-21

	utils/split_fasta.py

	version 0.1.0: substantial rewrite to enable the core functionality
to be unit tested.

	utils/extract_reads.py

	version 0.1.2: cosmetic updates to comments etc only.

Version 2013-01-18

	utils/split_fasta.py

	new utility for splitting Fasta file into individual chromosomes.

Version 2013-01-14

	QC-pipeline/qcreporter.py

	new option –verify: reports if all expected outputs from the QC
pipeline exist for each sample, to check that the pipeline ran to
completion.

Version 2013-01-10

	QC-pipeline/fastq_stats.sh

	fix bug in sorting stats file, now header lines should always sort to
the top of the file.

	illumina2cluster/analyse_illumina_run.py

	first version of reporting utility for Illumina data, similar to the
“analyse_solid_run.py” in solid2cluster.

	illumina2cluster/build_illumina_analysis_dir.py

	moved –list and –report functions to new analyse_illumina_data.py
utility.

	solid2cluster/analyse_solid_run.py

	only print paths to primary data files if –report-paths option is
specified

	print timestamps for primary data files along with sample names

	–quiet option renamed to –no-warnings

Version 2013-01-09

	illumina2cluster/build_illumina_analysis_dir.py

	moved classes for handling Illumina data to IlluminaData.py, and take
other utility functions from bcf_utils.py

	share/Experiment.py

	moved utility functions to bcf_utils.py module

	share/IlluminaData.py

	new Python module containing classes for handling Illumina-based
sequencing data, extracted from build_illumina_analysis_dir.py.

	share/bcf_utils.py

	new Python module containing common utility functions shared between
sequencing data modules, extracted from Experiment.py.

Version 2013-01-07

	illumina2cluster/build_illumina_analysis_dir.py

	add –report option to pretty print sample names within each project.

Version 2012-12-06

	NGS-general/boxplotps2png.sh

	utility to generate PNGs from PS boxplots generated by qc_boxplotter.

	QC-pipeline/qcreporter.py

	updated to deal with reporting QC for older SOLiD runs which predate
filtering (so there are just boxplots and fastq_screens).

Version 2012-11-27

	QC-pipeline/qcreporter.py

	added –qc_dir option to specify a non-default QC directory.

Version 2012-11-26

	illumina2cluster/rsync_seq_data.sh

	utility script wrapping rsync command for copying arbitrary sequence
data directories.

	illumina2cluster/update_sample_sheet.py

	check for empty sampleID and SampleProject names.

	QC-pipeline/illumina_qc.sh

	add –nogroup option to FastQC invocation.

	remove “.fastq” from output log file names when running with fastq.gz
input files.

	illumina2cluster/build_illumina_analysis_dirs.py

	make relative (rather than absolute) symbolic links to source fastq files
when building analysis directories.

Version 2012-11-16

	utils/fastq_edit.py

	version 0.0.2: added –stats option to generate simple statistics
about input FASTQ file.

Version 2012-11-13

	illumina2cluster/bclToFastq.sh

	added –nmismatches options (passes number of allowed mismatches to
the underlying configureBclToFastq.pl script in CASAVA).

Version 42012-11-01

	utils/symlink_checker.py

	new utility for checking and updating (broken) symbolic links.

	QC-pipeline/qcreporter.py

	added –format option (explicitly specify format of base input files if
necessary) and updated automatic platform and data type detection.

	share/Spreadsheet.py

	version 0.1.6: Workbook class issues warning when appending to an existing
XLS file (previously warned when creating a new file)

Version 2012-10-31

	illumina2cluster/update_sample_sheet.py

	new option –fix-duplicates automatically deals with duplicated
SampleID/SampleProject combinations; using –fix-duplicates and
–fix-spaces together should deal with most sample sheet problems
without requiring further intervention.

Version 2012-10-18

	solid2cluster/analyse_solid_run.py

	–layout option now defaults to ‘absolute’ links to primary data in generated
script.

	solid2cluster/build_analysis_dir.py

	default is now to make absolute links to primary data files

Version 2012-10-16

	illumina2cluster/update_sample_sheet.py

	added –ignore-warnings option (forces output sample sheet file to
be written out even if there are errors)

Version 2012-10-15

	illumina2cluster/bclToFastq.sh

	added –use-bases-mask option (passes mask specification to the underlying
configureBclToFastq.pl script in CASAVA).

	illumina2cluster/build_illumina_analysis_dir.py

	added new options –keep-names (preserve the full names of the source fastq
files when creating links) and –merge-replicates (create merged fastq files
for each set of replicates detected).

Version 2012-10-03

	QC-pipeline/run_qc_pipeline.py

	added –regexp option to allow filtering of input file names.

	QC-pipeline/solid_qc.sh, illumina_qc.sh

	write data about underlying QC programs (including versions) to
<sample>.programs output files.

	QC-pipeline/qcreporter.py

	report QC program information from <sample>.programs files (if
available).

	output ZIP file has run/sample-specific top-level directory; HTML
report file name restored to ‘qc_report.html’.

Version 2012-10-01

	QC-pipeline/qcreporter.py

	fixed bug for correctly allocating screens to samples

	added –platform option to explicitly specify platform type

	output HTML and ZIP file names now of the form qc_report.<run>.<name>

	solid2cluster/build_analysis_dir.py, illumina2cluster/build_illumina_analysis_dir.py

	create empty “ScriptCode” subdirectories for each analysis directory,
for bioinformaticians to store project-specific scripts and code etc.

Version 2012-09-28

	utils/md5checker.py

	version 0.2.3: explicitly report if either of the inputs doesn’t exist in
-d/–diff mode.

	solid2cluster/log_solid_run.sh

	renamed to log_seq_data.sh

	illumina2cluster/build_illumina_analysis_dir.py

	fix bug that resulted in broken links being generated.

Version 2012-09-24

	solid2clusteranalyse_solid_run.py

	new option –md5=… generates checksums for specified primary data files
(offering more fine-grained control than –md5sum option).

Version 2012-09-18

	solid2cluster/analyse_solid_run.py

	new option –gzip=… creates compressed versions of specified primary data
files for transfer.

	share/TabFile.py

	version 0.2.6: TabFile.append and TabFile.insert methods updated to allow
arbitrary TabDateLine objects to be added to the TabFile object.

Version 2012-09-17

	share/SolidData.py

	add SolidRun.verify method to check run integrity

	solid2cluster/analyse_solid_run.py

	use SolidRun.verify method to check SOLiD runs

Version 2012-09-13

	illumina2cluster/update_sample_sheet.py

	added checks for duplicated SampleID/SampleProject combinations & spaces
in names, and refuse to write new SampleSheet containing either of these
features.

	new option –fix-spaces will automatically replace spaces with underscores
in SampleID and SampleProject fields.

	illumina2cluster/build_illumina_analysis_dir.py

	updated to allow for possibility of more than one fastq.gz file per
sample directory

	new option –unaligned=… allows alternative name to be specified for the
“Unaligned” subdirectory holding fastq.gz files.

	share/TabFile.py

	version 0.2.5: implement __nonzero__ built-in for TabDataLine to enable
easy test for whether a line is blank.

Version 2012-09-11

	utils/md5checker.py

	version 0.2.2: added unit tests (run using –test option); fixed exit
code for -d/–diff mode if broken or missing files are encountered.

Version 2012-08-30

	utils/md5checker.py

	version 0.2.1: -d/–diff mode now compares files in pairwise fashion;
reports “missing” files as part of the total number of files checked;
also reports “broken” source files which cannot be checksummed.

Version 2012-08-24

	share/SolidData.py

	updates to SolidLibrary allows access to all primary data associated
with a sample/library, via new SolidLibrary.primary_data property
(which holds a list of SolidPrimaryData objects referencing CSFASTA
QUAL file pairs plus timestamp information).

	added basic support for locating ‘unassigned’ read files for each
sample: each SolidSample object has an associated unassigned
SolidLibrary.

Version 2012-08-23

	share/SolidData.py

	SolidRun class updated to handle situations where SOLiD run directory
names differ from the run names (e.g. because the directory has been
renamed)

	New function ‘list_run_directories’ gets matching SOLiD run directory
names

	solid2cluster/analyse_solid_run.py

	new option –copy can be used to copy selected primary data files from
a run (useful if preparing data for transfer)

	illumina2cluster/build_illumina_analysis_dirs.py

	new utility to query/build analysis directories for Illumina GA2
sequencing data post bcl-to-fastq conversion

Version 2012-08-15

	illumina2cluster/update_sample_sheet.py

	new utility for editing Illumina GA2 SampleSheet.csv files before
running bcl to fastq conversion

Version 2012-08-07

	ChIP-seq/make_macs_xls.py

	version 0.1.0: fixed to handle output from MACS 1.4.2 (backwards
compatible with output from other version of MACS)

Version 2012-08-03

	QC-pipeline/qcreporter.py

	new utility to generate HTML reports for SOLiD and Illumina QC
script runs

Version 2012-07-27

	shared/TabFile.py

	version 0.2.4: allow TabFile.computeColumn() to reference
destination columns by integer indices as well as by column name

Version 2012-07-24

	shared/TabFile.py

	version 0.2.3: TabFile can now handle user-defined delimiters (not
just tabs) for reading and writing; new TabFile.transpose() method
converts columns to rows

Version 2012-07-05

	utils/md5checker.py

	version 0.1.2: explicitly report missing files separately from
checksum failures

Version 2012-07-02

	RNA-seq/bowtie_mapping_stats.py

	version 0.1.6: for multiple input files, add the filename to the
sample number in the output file

Version 2012-06-29

	illumina2cluster/bclToFastq.sh

	Bcl to Fastq conversion wrapper script for Illumina sequencing data

	QC-pipeline

	new script illumina_qc.sh implements QC pipeline for Illumina data

	qc.sh renamed to solid_qc.sh

Version 2012-06-25

	share/TabFile.py

	version 0.2.1: TabDataLine now preserves the type of non-numeric
data items (previously they were automatically converted to strings)

Version 2012-06-22

	utils/md5checker.py

	version 0.1.1: reports ‘bad’ MD5 sum lines; can now handle file
names containing whitespace

Version 2012-06-13

	build-indexes/bowtie_build_indexes.sh

	added –cs and –nt options (build only color- or nucleotide
space indexes)

	build-indexes/fetch_fasta.sh

	updated UniVec for build 7.0 (Dec. 5 2011)

Version 2012-06-01

	QC-pipeline/qc.sh

	updated to run in either ‘single end’ mode (operate on one F3 or
F5 csfasta/qual pair) or ‘paired end’ mode (operate on F3
csfasta/qual pair plus csfasta/qual F5 pair)

	QC-pipeline/cleanup_qc.sh

	utility to clean up all QC products from current directory

Version 2012-05-17

	NGS-general/remove_mispairs.py

	Python implementation of remove_mispairs.pl works with
non-interleaved any fastq

Version 2012-05-10

	NGS-general

	New utilities from Ian Donaldson:

	remove_mispairs.pl: remove “singleton” reads from paired end fastq

	separate_paired_fastq.pl: separate F3 and F5 reads from fastq

	trim_fastq.pl: trim down sequences in fastq file from 5’ end

Version 2012-05-09

	microarray/xrothologs.py

	cross-reference data for two species using probe set lookup

Version 2012-05-08

	RNA-seq/bowtie_mapping_stats.py

	summarise statistics from bowtie output into XLS spreadsheet

Version 2012-05-03

	utils/sam2soap.py

	first version of SAM to SOAP converter

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bcftbx	

 	
 	
 bcftbx.cmdparse	

 	
 	
 bcftbx.Experiment	

 	
 	
 bcftbx.FASTQFile	

 	
 	
 bcftbx.htmlpagewriter	

 	
 	
 bcftbx.IlluminaData	

 	
 	
 bcftbx.JobRunner	

 	
 	
 bcftbx.Md5sum	

 	
 	
 bcftbx.ngsutils	

 	
 	
 bcftbx.Pipeline	

 	
 	
 bcftbx.platforms	

 	
 	
 bcftbx.qc.report	

 	
 	
 bcftbx.simple_xls	

 	
 	
 bcftbx.SolidData	

 	
 	
 bcftbx.Spreadsheet	

 	
 	
 bcftbx.TabFile	

 	
 	
 bcftbx.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	acquire() (bcftbx.JobRunner.ResourceLock method)

 	add() (bcftbx.htmlpagewriter.HTMLPageWriter method)

 	add_arg() (in module bcftbx.cmdparse)

 	add_command() (bcftbx.cmdparse.CommandParser method)

 	add_debug_option() (in module bcftbx.cmdparse)

 	add_dir_to_zip() (in module bcftbx.qc.report)

 	add_dry_run_option() (in module bcftbx.cmdparse)

 	add_no_save_option() (in module bcftbx.cmdparse)

 	add_nprocessors_option() (in module bcftbx.cmdparse)

 	add_result() (bcftbx.Md5sum.Md5CheckReporter method)

 	add_runner_option() (in module bcftbx.cmdparse)

 	add_work_sheet() (bcftbx.simple_xls.XLSWorkBook method)

 	addBoxplot() (bcftbx.qc.report.QCSample method)

 	addCSSRule() (bcftbx.htmlpagewriter.HTMLPageWriter method)

 	addDuplicateExperiment() (bcftbx.Experiment.ExperimentList method)

 	addEmptyRow() (bcftbx.Spreadsheet.Spreadsheet method)

 	addExperiment() (bcftbx.Experiment.ExperimentList method)

 	
 	addFastQC() (bcftbx.qc.report.QCSample method)

 	addJavaScript() (bcftbx.htmlpagewriter.HTMLPageWriter method)

 	addProgramInfo() (bcftbx.qc.report.QCSample method)

 	addRow() (bcftbx.Spreadsheet.Spreadsheet method)

 	addSample() (bcftbx.qc.report.QCReporter method)

 	addScreen() (bcftbx.qc.report.QCSample method)

 	addSheet() (bcftbx.Spreadsheet.Workbook method)

 	addTabData() (bcftbx.Spreadsheet.Worksheet method)

 	addText() (bcftbx.Spreadsheet.Worksheet method)

 	addTitleRow() (bcftbx.Spreadsheet.Spreadsheet method)

 	append() (bcftbx.TabFile.TabDataLine method)

 	(bcftbx.TabFile.TabFile method)

 	append_column() (bcftbx.simple_xls.XLSWorkSheet method)

 	append_row() (bcftbx.simple_xls.XLSWorkSheet method)

 	appendColumn() (bcftbx.TabFile.TabDataLine method)

 	(bcftbx.TabFile.TabFile method)

 	AttributeDictionary (class in bcftbx.utils)

B

 	
 	BaseJobRunner (class in bcftbx.JobRunner)

 	bcftbx.cmdparse (module)

 	bcftbx.Experiment (module)

 	bcftbx.FASTQFile (module)

 	bcftbx.htmlpagewriter (module)

 	bcftbx.IlluminaData (module)

 	bcftbx.JobRunner (module)

 	bcftbx.Md5sum (module)

 	bcftbx.ngsutils (module)

 	
 	bcftbx.Pipeline (module)

 	bcftbx.platforms (module)

 	bcftbx.qc.report (module)

 	bcftbx.simple_xls (module)

 	bcftbx.SolidData (module)

 	bcftbx.Spreadsheet (module)

 	bcftbx.TabFile (module)

 	bcftbx.utils (module)

 	boxplots() (bcftbx.qc.report.QCSample method)

 	buildAnalysisDirs() (bcftbx.Experiment.ExperimentList method)

C

 	
 	CasavaSampleSheet (class in bcftbx.IlluminaData)

 	cell() (in module bcftbx.simple_xls)

 	CellIndex (class in bcftbx.simple_xls)

 	chmod() (in module bcftbx.utils)

 	chown() (bcftbx.utils.PathInfo method)

 	cmp_column_indices() (in module bcftbx.simple_xls)

 	column_id_from_index() (bcftbx.Spreadsheet.Worksheet method)

 	column_index_to_integer() (in module bcftbx.simple_xls)

 	column_integer_to_index() (in module bcftbx.simple_xls)

 	column_is_empty() (bcftbx.simple_xls.XLSWorkSheet method)

 	columnof() (bcftbx.simple_xls.XLSWorkSheet method)

 	ColumnRange (class in bcftbx.simple_xls)

 	
 	CommandParser (class in bcftbx.cmdparse)

 	commonprefix() (in module bcftbx.utils)

 	compute_md5sums() (bcftbx.Md5sum.Md5Checker class method)

 	computeColumn() (bcftbx.TabFile.TabFile method)

 	concatenate_fastq_files() (in module bcftbx.utils)

 	convert_miseq_samplesheet_to_casava() (in module bcftbx.IlluminaData)

 	convert_to_number() (in module bcftbx.simple_xls)

 	convert_to_str() (bcftbx.TabFile.TabDataLine method)

 	convert_to_type() (bcftbx.TabFile.TabDataLine method)

 	convert_to_type_pep515() (bcftbx.TabFile.TabDataLine method)

 	copy() (bcftbx.Experiment.Experiment method)

 	count_reads() (in module bcftbx.qc.report)

D

 	
 	data_format (bcftbx.qc.report.QCReporter attribute)

 	datetime (bcftbx.utils.PathInfo attribute)

 	deepest_accessible_parent (bcftbx.utils.PathInfo attribute)

 	delimiter() (bcftbx.TabFile.TabDataLine method)

 	
 	describe() (bcftbx.Experiment.Experiment method)

 	describe_project() (in module bcftbx.IlluminaData)

 	dirn (bcftbx.qc.report.QCReporter attribute)

 	dirname() (bcftbx.Experiment.Experiment method)

E

 	
 	encodePNG() (bcftbx.htmlpagewriter.PNGBase64Encoder method)

 	errFile() (bcftbx.JobRunner.BaseJobRunner method)

 	(bcftbx.JobRunner.GEJobRunner method)

 	(bcftbx.JobRunner.SimpleJobRunner method)

 	error() (bcftbx.cmdparse.CommandParser method)

 	errorState() (bcftbx.JobRunner.BaseJobRunner method)

 	(bcftbx.JobRunner.GEJobRunner method)

 	eval_formula() (in module bcftbx.simple_xls)

 	excel_number_format (bcftbx.simple_xls.XLSStyle attribute)

 	exists (bcftbx.utils.PathInfo attribute)

 	
 	exit_status() (bcftbx.JobRunner.BaseJobRunner method)

 	(bcftbx.JobRunner.GEJobRunner method)

 	(bcftbx.JobRunner.SimpleJobRunner method)

 	Experiment (class in bcftbx.Experiment)

 	ExperimentList (class in bcftbx.Experiment)

 	extract_index() (in module bcftbx.utils)

 	extract_index_as_string() (in module bcftbx.utils)

 	extract_initials() (in module bcftbx.utils)

 	extract_library_timestamp() (in module bcftbx.SolidData)

 	extract_prefix() (in module bcftbx.utils)

F

 	
 	FastqAttributes (class in bcftbx.FASTQFile)

 	fastqc (bcftbx.qc.report.QCSample attribute)

 	FastqIterator (class in bcftbx.FASTQFile)

 	FastqRead (class in bcftbx.FASTQFile)

 	fastqs_are_pair() (in module bcftbx.FASTQFile)

 	fetch_runner() (in module bcftbx.JobRunner)

 	filename() (bcftbx.TabFile.TabFile method)

 	fill_column() (bcftbx.simple_xls.XLSWorkSheet method)

 	
 	find_program() (in module bcftbx.utils)

 	fix_bases_mask() (in module bcftbx.IlluminaData)

 	format (bcftbx.FASTQFile.SequenceIdentifier attribute)

 	format_file_size() (in module bcftbx.utils)

 	format_value() (in module bcftbx.simple_xls)

 	freezePanes() (bcftbx.Spreadsheet.Worksheet method)

 	fsize (bcftbx.FASTQFile.FastqAttributes attribute)

 	full_index() (bcftbx.simple_xls.XLSColumn method)

G

 	
 	ge_extra_args (bcftbx.JobRunner.GEJobRunner attribute)

 	GEJobRunner (class in bcftbx.JobRunner)

 	get_casava_sample_sheet() (in module bcftbx.IlluminaData)

 	get_current_user() (in module bcftbx.utils)

 	get_fastq_file_handle() (in module bcftbx.FASTQFile)

 	get_gid_from_group() (in module bcftbx.utils)

 	get_group_from_gid() (in module bcftbx.utils)

 	get_primary_data_file_pair() (in module bcftbx.SolidData)

 	get_sequencer_platform() (in module bcftbx.platforms)

 	get_style() (bcftbx.simple_xls.XLSWorkSheet method)

 	get_uid_from_user() (in module bcftbx.utils)

 	get_unique_fastq_names() (in module bcftbx.IlluminaData)

 	get_user_from_uid() (in module bcftbx.utils)

 	getColumnId() (bcftbx.Spreadsheet.Worksheet method)

 	
 	GetFastqFiles() (in module bcftbx.Pipeline)

 	GetFastqGzFiles() (in module bcftbx.Pipeline)

 	getLastExperiment() (bcftbx.Experiment.ExperimentList method)

 	getlines() (in module bcftbx.utils)

 	getPrimaryDataFiles() (bcftbx.qc.report.QCReporter method)

 	getreads() (in module bcftbx.ngsutils)

 	getreads_regex() (in module bcftbx.ngsutils)

 	getreads_subset() (in module bcftbx.ngsutils)

 	getSheet() (bcftbx.Spreadsheet.Workbook method)

 	GetSolidDataFiles() (in module bcftbx.Pipeline)

 	GetSolidPairedEndFiles() (in module bcftbx.Pipeline)

 	getXfStyle() (bcftbx.Spreadsheet.Styles method)

 	gid (bcftbx.utils.PathInfo attribute)

 	group (bcftbx.utils.PathInfo attribute)

H

 	
 	handle_generic_commands() (bcftbx.cmdparse.CommandParser method)

 	header() (bcftbx.TabFile.TabFile method)

 	
 	html (bcftbx.qc.report.QCReporter attribute)

 	HTMLPageWriter (class in bcftbx.htmlpagewriter)

I

 	
 	IEMSampleSheet (class in bcftbx.IlluminaData)

 	IlluminaData (class in bcftbx.IlluminaData)

 	IlluminaDataError (class in bcftbx.IlluminaData)

 	IlluminaFastq (class in bcftbx.IlluminaData)

 	IlluminaProject (class in bcftbx.IlluminaData)

 	IlluminaQCReporter (class in bcftbx.qc.report)

 	IlluminaQCSample (class in bcftbx.qc.report)

 	IlluminaRun (class in bcftbx.IlluminaData)

 	IlluminaRunInfo (class in bcftbx.IlluminaData)

 	IlluminaSample (class in bcftbx.IlluminaData)

 	incr_col() (in module bcftbx.simple_xls)

 	indexByLineNumber() (bcftbx.TabFile.TabFile method)

 	insert() (bcftbx.TabFile.TabFile method)

 	insert_block_data() (bcftbx.simple_xls.XLSWorkSheet method)

 	insert_column() (bcftbx.simple_xls.XLSWorkSheet method)

 	insert_column_data() (bcftbx.simple_xls.XLSWorkSheet method)

 	insert_row() (bcftbx.simple_xls.XLSWorkSheet method)

 	insert_row_data() (bcftbx.simple_xls.XLSWorkSheet method)

 	insertColumn() (bcftbx.Spreadsheet.Worksheet method)

 	is_absolute (bcftbx.utils.Symlink attribute)

 	
 	is_boxplot() (in module bcftbx.qc.report)

 	is_broken (bcftbx.utils.Symlink attribute)

 	is_dir (bcftbx.utils.PathInfo attribute)

 	is_empty (bcftbx.qc.report.IlluminaQCSample attribute)

 	is_executable (bcftbx.utils.PathInfo attribute)

 	is_fastq_screen() (in module bcftbx.qc.report)

 	is_fastqc() (in module bcftbx.qc.report)

 	is_file (bcftbx.utils.PathInfo attribute)

 	is_float() (in module bcftbx.simple_xls)

 	is_full (bcftbx.simple_xls.CellIndex attribute)

 	is_group_readable (bcftbx.utils.PathInfo attribute)

 	is_group_writable (bcftbx.utils.PathInfo attribute)

 	is_gzipped_file() (in module bcftbx.utils)

 	is_int() (in module bcftbx.simple_xls)

 	is_link (bcftbx.utils.PathInfo attribute)

 	is_locked() (bcftbx.JobRunner.ResourceLock method)

 	is_pair_of() (bcftbx.FASTQFile.SequenceIdentifier method)

 	is_paired_end() (in module bcftbx.SolidData)

 	is_program_info() (in module bcftbx.qc.report)

 	is_readable (bcftbx.utils.PathInfo attribute)

 	isRunning() (bcftbx.JobRunner.BaseJobRunner method)

J

 	
 	Job (class in bcftbx.Pipeline)

L

 	
 	last_column (bcftbx.simple_xls.XLSWorkSheet attribute)

 	last_row (bcftbx.simple_xls.XLSWorkSheet attribute)

 	Limits (class in bcftbx.simple_xls)

 	lineno() (bcftbx.TabFile.TabDataLine method)

 	LinkNames (class in bcftbx.Experiment)

 	links() (in module bcftbx.utils)

 	list() (bcftbx.JobRunner.BaseJobRunner method)

 	(bcftbx.JobRunner.GEJobRunner method)

 	(bcftbx.JobRunner.SimpleJobRunner method)

 	
 	list_commands() (bcftbx.cmdparse.CommandParser method)

 	list_dirs() (in module bcftbx.utils)

 	list_platforms() (in module bcftbx.platforms)

 	log_dir (bcftbx.JobRunner.BaseJobRunner attribute)

 	logFile() (bcftbx.JobRunner.BaseJobRunner method)

 	(bcftbx.JobRunner.GEJobRunner method)

 	(bcftbx.JobRunner.SimpleJobRunner method)

 	lookup() (bcftbx.TabFile.TabFile method)

M

 	
 	match() (in module bcftbx.SolidData)

 	md5_walk() (bcftbx.Md5sum.Md5Checker class method)

 	Md5Checker (class in bcftbx.Md5sum)

 	Md5CheckReporter (class in bcftbx.Md5sum)

 	md5cmp_dirs() (bcftbx.Md5sum.Md5Checker class method)

 	
 	md5cmp_files() (bcftbx.Md5sum.Md5Checker class method)

 	md5sum() (in module bcftbx.Md5sum)

 	mkdir() (in module bcftbx.utils)

 	mklink() (in module bcftbx.utils)

 	mtime (bcftbx.utils.PathInfo attribute)

N

 	
 	n_errors (bcftbx.Md5sum.Md5CheckReporter attribute)

 	n_failed (bcftbx.Md5sum.Md5CheckReporter attribute)

 	n_files (bcftbx.Md5sum.Md5CheckReporter attribute)

 	n_missing (bcftbx.Md5sum.Md5CheckReporter attribute)

 	n_ok (bcftbx.Md5sum.Md5CheckReporter attribute)

 	name (bcftbx.qc.report.QCReporter attribute)

 	(bcftbx.simple_xls.XLSStyle attribute)

 	name() (bcftbx.JobRunner.GEJobRunner method)

 	(bcftbx.JobRunner.SimpleJobRunner method)

 	name_matches() (in module bcftbx.utils)

 	
 	names() (bcftbx.Experiment.LinkNames method)

 	nColumns() (bcftbx.TabFile.TabFile method)

 	next() (bcftbx.simple_xls.ColumnRange method)

 	next_column (bcftbx.simple_xls.XLSWorkSheet attribute)

 	next_row (bcftbx.simple_xls.XLSWorkSheet attribute)

 	normalise_barcode() (in module bcftbx.IlluminaData)

 	nreads (bcftbx.FASTQFile.FastqAttributes attribute)

 	nreads() (in module bcftbx.FASTQFile)

 	nslots (bcftbx.JobRunner.GEJobRunner attribute)

 	(bcftbx.JobRunner.SimpleJobRunner attribute)

O

 	
 	OrderedDictionary (class in bcftbx.utils)

P

 	
 	parse_args() (bcftbx.cmdparse.CommandParser method)

 	parser_for() (bcftbx.cmdparse.CommandParser method)

 	path (bcftbx.utils.PathInfo attribute)

 	PathInfo (class in bcftbx.utils)

 	PipelineRunner (class in bcftbx.Pipeline)

 	
 	PNGBase64Encoder (class in bcftbx.htmlpagewriter)

 	pretty_print_names() (in module bcftbx.utils)

 	primary_data_dir (bcftbx.qc.report.QCReporter attribute)

 	print_available_commands() (bcftbx.cmdparse.CommandParser method)

 	print_command() (bcftbx.cmdparse.CommandParser method)

 	programs (bcftbx.qc.report.QCSample attribute)

Q

 	
 	qc_dir (bcftbx.qc.report.QCReporter attribute)

 	QCReporter (class in bcftbx.qc.report)

 	
 	QCReporterError

 	QCSample (class in bcftbx.qc.report)

 	queue() (bcftbx.JobRunner.GEJobRunner method)

R

 	
 	release() (bcftbx.JobRunner.ResourceLock method)

 	relpath() (bcftbx.utils.PathInfo method)

 	render_as_text() (bcftbx.simple_xls.XLSWorkSheet method)

 	render_cell() (bcftbx.simple_xls.XLSWorkSheet method)

 	reorderColumns() (bcftbx.TabFile.TabFile method)

 	report() (bcftbx.qc.report.IlluminaQCReporter method)

 	(bcftbx.qc.report.IlluminaQCSample method)

 	(bcftbx.qc.report.QCReporter method)

 	(bcftbx.qc.report.QCSample method)

 	(bcftbx.qc.report.SolidQCReporter method)

 	(bcftbx.qc.report.SolidQCSample method)

 	report_base_name (bcftbx.qc.report.QCReporter attribute)

 	report_boxplots() (bcftbx.qc.report.QCSample method)

 	
 	report_fastqc() (bcftbx.qc.report.QCSample method)

 	report_name (bcftbx.qc.report.QCReporter attribute)

 	report_programs() (bcftbx.qc.report.QCSample method)

 	report_screens() (bcftbx.qc.report.QCSample method)

 	resolve_link_via_parent (bcftbx.utils.PathInfo attribute)

 	resolve_target() (bcftbx.utils.Symlink method)

 	ResourceLock (class in bcftbx.JobRunner)

 	rootname() (in module bcftbx.utils)

 	row_is_empty() (bcftbx.simple_xls.XLSWorkSheet method)

 	rowof() (bcftbx.simple_xls.XLSWorkSheet method)

 	run (bcftbx.qc.report.QCReporter attribute)

 	run() (bcftbx.JobRunner.BaseJobRunner method)

 	(bcftbx.JobRunner.GEJobRunner method)

 	(bcftbx.JobRunner.SimpleJobRunner method)

S

 	
 	samples (bcftbx.qc.report.QCReporter attribute)

 	SampleSheet (class in bcftbx.IlluminaData)

 	samplesheet_index_sequence() (in module bcftbx.IlluminaData)

 	save() (bcftbx.Spreadsheet.Workbook method)

 	(bcftbx.Spreadsheet.Worksheet method)

 	save_as_xls() (bcftbx.simple_xls.XLSWorkBook method)

 	save_as_xlsx() (bcftbx.simple_xls.XLSWorkBook method)

 	screens() (bcftbx.qc.report.QCSample method)

 	SequenceIdentifier (class in bcftbx.FASTQFile)

 	set_log_dir() (bcftbx.JobRunner.BaseJobRunner method)

 	set_style() (bcftbx.simple_xls.XLSWorkSheet method)

 	setCellValue() (bcftbx.Spreadsheet.Worksheet method)

 	SimpleJobRunner (class in bcftbx.JobRunner)

 	slide_layout() (in module bcftbx.SolidData)

 	SolidBarcodeStatistics (class in bcftbx.SolidData)

 	SolidLibrary (class in bcftbx.SolidData)

 	SolidPipelineRunner (class in bcftbx.Pipeline)

 	SolidPrimaryData (class in bcftbx.SolidData)

 	SolidProject (class in bcftbx.SolidData)

 	
 	SolidQCReporter (class in bcftbx.qc.report)

 	SolidQCSample (class in bcftbx.qc.report)

 	SolidRun (class in bcftbx.SolidData)

 	SolidRunDefinition (class in bcftbx.SolidData)

 	SolidRunInfo (class in bcftbx.SolidData)

 	SolidSample (class in bcftbx.SolidData)

 	sort() (bcftbx.TabFile.TabFile method)

 	split_into_lines() (in module bcftbx.utils)

 	split_run_name() (in module bcftbx.IlluminaData)

 	split_sample_name() (in module bcftbx.qc.report)

 	Spreadsheet (class in bcftbx.Spreadsheet)

 	status (bcftbx.Md5sum.Md5CheckReporter attribute)

 	strip_ext() (in module bcftbx.utils)

 	strip_ngs_extensions() (in module bcftbx.qc.report)

 	style() (bcftbx.simple_xls.XLSStyle method)

 	Styles (class in bcftbx.Spreadsheet)

 	subset() (bcftbx.TabFile.TabDataLine method)

 	summarise_projects() (in module bcftbx.IlluminaData)

 	summary() (bcftbx.Md5sum.Md5CheckReporter method)

 	Symlink (class in bcftbx.utils)

T

 	
 	TabDataLine (class in bcftbx.TabFile)

 	TabFile (class in bcftbx.TabFile)

 	TabFileIterator (class in bcftbx.TabFile)

 	target (bcftbx.utils.Symlink attribute)

 	terminate() (bcftbx.JobRunner.BaseJobRunner method)

 	(bcftbx.JobRunner.GEJobRunner method)

 	(bcftbx.JobRunner.SimpleJobRunner method)

 	
 	touch() (in module bcftbx.utils)

 	transformColumn() (bcftbx.TabFile.TabFile method)

 	transpose() (bcftbx.TabFile.TabFile method)

U

 	
 	uid (bcftbx.utils.PathInfo attribute)

 	
 	update_target() (bcftbx.utils.Symlink method)

 	user (bcftbx.utils.PathInfo attribute)

V

 	
 	verify() (bcftbx.qc.report.IlluminaQCSample method)

 	(bcftbx.qc.report.QCReporter method)

 	(bcftbx.qc.report.QCSample method)

 	(bcftbx.qc.report.SolidQCReporter method)

 	(bcftbx.qc.report.SolidQCSample method)

 	
 	verify_md5sums() (bcftbx.Md5sum.Md5Checker class method)

 	verify_run_against_sample_sheet() (in module bcftbx.IlluminaData)

W

 	
 	walk() (bcftbx.Md5sum.Md5Checker class method)

 	(in module bcftbx.utils)

 	Workbook (class in bcftbx.Spreadsheet)

 	Worksheet (class in bcftbx.Spreadsheet)

 	
 	write() (bcftbx.htmlpagewriter.HTMLPageWriter method)

 	(bcftbx.Spreadsheet.Spreadsheet method)

 	(bcftbx.TabFile.TabFile method)

 	write_column() (bcftbx.simple_xls.XLSWorkSheet method)

 	write_row() (bcftbx.simple_xls.XLSWorkSheet method)

X

 	
 	XLSColumn (class in bcftbx.simple_xls)

 	XLSLimits (class in bcftbx.simple_xls)

 	XLSStyle (class in bcftbx.simple_xls)

 	
 	XLSWorkBook (class in bcftbx.simple_xls)

 	XLSWorkSheet (class in bcftbx.simple_xls)

 	XLSXLimits (class in bcftbx.simple_xls)

Z

 	
 	zip() (bcftbx.qc.report.IlluminaQCReporter method)

 	(bcftbx.qc.report.QCReporter method)

 	
 	zip_includes() (bcftbx.qc.report.QCSample method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 genomics-bcftbx: library and utilities for NGS and genomic bioinformatics

 		
 Overview

 		
 Requirements

 		
 Supported Python versions

 		
 Software dependencies

 		
 Installation

 		
 Illumina sequencing data

 		
 Overview

 		
 Primary sequencing data: structure and naming conventions

 		
 BCL-to-Fastq conversion software

 		
 Demultiplexing: sample sheet files

 		
 Output directory structure and Fastq naming conventions

 		
 Legacy outputs

 		
 SOLiD sequencing data

 		
 Structure of SOLiD run names

 		
 Navigating SOLiD run data directories

 		
 Run definition file

 		
 Primary data files (csfasta/qual) for multiplex fragment sequencing

 		
 Primary data files (csfasta/qual) for multiplex paired-end sequencing

 		
 Automatic location of primary data using analyse_solid_run.py

 		
 Handling sequencing run data

 		
 Illumina sequencing runs

 		
 SOLiD sequencing runs

 		
 NGS utilities

 		
 Reporting ChIP-seq outputs

 		
 Reporting RNA-seq outputs

 		
 Determining strandedness of sequencing data

 		
 Manage contaminant sequences for FastQC

 		
 Convert SAM file to SOAP format

 		
 Fastq manipulation

 		
 Extract subsets of reads from Fastq files

 		
 Split multi-lane Fastq into individual lanes

 		
 Verify that Fastq files are paired

 		
 Fasta manipulation

 		
 Extract chromosome sequences from FASTA file

 		
 Reorder FASTA file into karyotypic order

 		
 Microarray data

 		
 Probeset annotation

 		
 Average data for ‘best’ exons

 		
 Input file format

 		
 Output file format

 		
 Cross-reference data for two species

 		
 Non-bioinformatics utilities

 		
 Checking files and directories using MD5 sums

 		
 Logging details of sequencing runs

 		
 Command reference

 		
 analyse_solid_run.py

 		
 annotate_probesets.py

 		
 best_exons.py

 		
 bowtie_mapping_stats.py

 		
 extract_reads.py

 		
 fastq_strand.py

 		
 log_seq_data.sh

 		
 make_macs_xls.py

 		
 make_macs2_xls.py

 		
 manage_seqs.py

 		
 md5checker.py

 		
 prep_sample_sheet.py

 		
 reorder_fasta.py

 		
 sam2soap.py

 		
 split_fasta.py

 		
 split_fastq.py

 		
 verify_paired.py

 		
 xrorthologs.py

 		
 bcftbx library reference

 		
 bcftbx.IlluminaData

 		
 Core data and run handling classes

 		
 Samplesheet handling

 		
 Utility classes and functions

 		
 Exception classes

 		
 bcftbx.SolidData

 		
 SolidRun

 		
 SolidSample

 		
 SolidLibrary

 		
 SolidPrimaryData

 		
 Functions

 		
 bcftbx.Experiment

 		
 bcftbx.FASTQFile

 		
 bcftbx.JobRunner

 		
 bcftbx.Pipeline

 		
 Classes

 		
 Functions

 		
 bcftbx.Md5sum

 		
 bcftbx.platforms

 		
 bcftbx.TabFile

 		
 Creating a TabFile

 		
 Accessing Data within a TabFile

 		
 Adding and Removing Data

 		
 Filtering Data

 		
 Sorting Data

 		
 Manipulating Data: whole column operations

 		
 Writing to File

 		
 Specifying Delimiters

 		
 TabFileIterator: iterating through a tab-delimited file

 		
 bcftbx.simple_xls and bcftbx.Spreadsheet

 		
 simple_xls

 		
 Spreadsheet

 		
 bcftbx.cmdparse

 		
 bcftbx.qc

 		
 bcftbx.qc.report

 		
 bcftbx.htmlpagewriter

 		
 bcftbx.utils

 		
 General utility classes

 		
 File handling utilities

 		
 File system wrappers and utilities

 		
 Symbolic link handling

 		
 Sample name utilities

 		
 File manipulations

 		
 Text manipulations

 		
 bcftbx.ngsutils

 		
 Extracting reads from Fastq, cfasta and qual files

 		
 Version History and Changes

 		
 Version 1.11.1 (2021-06-07)

 		
 Version 1.11.0 (2020-09-16)

 		
 Version 1.10.0 (2020-09-16)

 		
 Version 1.9.1 (2020-06-09)

 		
 Version 1.9.0 (2020-05-20)

 		
 Version 1.8.3 (2020-02-27)

 		
 Version 1.8.2 (2020-02-17)

 		
 Version 1.8.1 (2019-11-20)

 		
 Version 1.8.0 (2019-09-27)

 		
 Version 1.7.0 (2019-07-04)

 		
 Version 1.6.0 (2019-06-10)

 		
 Version 1.5.5 (2019-04-30)

 		
 Version 1.5.4 (2019-02-21)

 		
 Version 1.5.3 (2019-01-31)

 		
 Version 1.5.2 (2018-09-28)

 		
 Version 1.5.1 (2018-09-13)

 		
 Version 1.5.0 (2018-08-22)

 		
 Version 1.4.0 (2018-07-03)

 		
 Version 1.3.2 (2018-05-14)

 		
 Version 1.3.1 (2018-04-19)

 		
 Version 1.3.0 (2018-03-29)

 		
 Version 1.2.0 (2018-03-29)

 		
 Version 1.1.0 (2018-01-24)

 		
 Version 1.0.4 (2017-10-05)

 		
 Version 1.0.3 (2017-08-31)

 		
 Version 1.0.2 (2017-05-12)

 		
 Version 1.0.1 (2017-03-31)

 		
 Version 1.0.0 (2017-02-23)

 		
 Version 0.99.15 (2016-10-07)

 		
 Version 0.99.14 (2016-08-31)

 		
 Version 0.99.13 (2016-08-16)

 		
 Version 0.99.12 (2016-06-30)

 		
 Version 0.99.11 (2016-06-09)

 		
 Version 0.99.10 (2016-06-02)

 		
 Version 0.99.9 (2016-05-23)

 		
 Version 0.99.8 (2016-04-05)

 		
 Version 0.99.7 (2016-04-01)

 		
 Version 0.99.6 (2016-01-19)

 		
 Version 0.99.5 (2016-01-04)

 		
 Version 0.99.4 (2015-11-19)

 		
 Version 0.99.3 (2015-09-25)

 		
 Version 0.99.2 (2015-08-05)

 		
 Version 0.99.1 (2015-04-16)

 		
 Version 2015-02-12

 		
 Version 2014-12-10

 		
 Version 2014-12-04

 		
 Version 2014-12-03

 		
 Version 2014-10-31

 		
 Version 2014-10-14

 		
 Version 2014-10-10

 		
 Version 2014-10-09

 		
 Version 2014-10-08

 		
 Version 2014-09-01

 		
 Version 2014-08-21

 		
 Version 2014-08-15

 		
 Version 2014-08-11

 		
 Version 2014-06-16

 		
 Version 2014-06-04

 		
 Version 2014-06-02

 		
 Version 2014-05-22

 		
 Version 2014-05-15

 		
 Version 2014-05-07

 		
 Version 2014-04-17

 		
 Version 2014-04-10

 		
 Version 2014-04-09

 		
 Version 2014-04-04

 		
 Version 2014-02-11

 		
 Version 2013-11-18

 		
 Version 2013-11-15

 		
 Version 2013-11-13

 		
 Version 2013-09-11

 		
 Version 2013-09-09

 		
 Version 2013-09-06

 		
 Version 2013-08-22

 		
 Version 2013-08-21

 		
 Version 2013-08-20

 		
 Version 2013-08-19

 		
 Version 2013-08-14

 		
 Version 2013-08-08

 		
 Version 2013-08-05

 		
 Version 2013-08-01

 		
 Version 2013-07-26

 		
 Version 2013-07-19

 		
 Version 2013-07-15

 		
 Version 2013-05-21

 		
 Version 2013-05-20

 		
 Version 2013-05-17

 		
 Version 2013-05-15

 		
 Version 2013-05-02

 		
 Version 2013-05-01

 		
 Version 2013-04-25

 		
 Version 2013-04-24

 		
 Version 2013-04-23

 		
 Version 2013-04-22

 		
 Version 2013-04-16

 		
 Version 2013-04-11

 		
 Version 2013-04-10

 		
 Version 2013-04-09

 		
 Version 2013-04-08

 		
 Version 2013-04-05

 		
 Version 2013-03-13

 		
 Version 2013-03-07

 		
 Version 2013-02-19

 		
 Version 2013-02-18

 		
 Version 2013-01-29

 		
 Version 2013-01-25

 		
 Version 2013-01-24

 		
 Version 2013-01-23

 		
 Version 2013-01-22

 		
 Version 2013-01-21

 		
 Version 2013-01-18

 		
 Version 2013-01-14

 		
 Version 2013-01-10

 		
 Version 2013-01-09

 		
 Version 2013-01-07

 		
 Version 2012-12-06

 		
 Version 2012-11-27

 		
 Version 2012-11-26

 		
 Version 2012-11-16

 		
 Version 2012-11-13

 		
 Version 42012-11-01

 		
 Version 2012-10-31

 		
 Version 2012-10-18

 		
 Version 2012-10-16

 		
 Version 2012-10-15

 		
 Version 2012-10-03

 		
 Version 2012-10-01

 		
 Version 2012-09-28

 		
 Version 2012-09-24

 		
 Version 2012-09-18

 		
 Version 2012-09-17

 		
 Version 2012-09-13

 		
 Version 2012-09-11

 		
 Version 2012-08-30

 		
 Version 2012-08-24

 		
 Version 2012-08-23

 		
 Version 2012-08-15

 		
 Version 2012-08-07

 		
 Version 2012-08-03

 		
 Version 2012-07-27

 		
 Version 2012-07-24

 		
 Version 2012-07-05

 		
 Version 2012-07-02

 		
 Version 2012-06-29

 		
 Version 2012-06-25

 		
 Version 2012-06-22

 		
 Version 2012-06-13

 		
 Version 2012-06-01

 		
 Version 2012-05-17

 		
 Version 2012-05-10

 		
 Version 2012-05-09

 		
 Version 2012-05-08

 		
 Version 2012-05-03

_static/up-pressed.png

_static/up.png

